This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383479 #18 May 29 2025 08:06:11 %S A383479 1,2,6,24,100,420,1792,7752,33858,148940,658944,2929056,13070876, %T A383479 58521344,262754040,1182619280,5334172518,24104916504,109111142376, %U A383479 494630028200,2245300152480,10204575481320,46429481139000,211460450151600,963971663881200,4398118872144192 %N A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1). %H A383479 Robert Israel, <a href="/A383479/b383479.txt">Table of n, a(n) for n = 0..1492</a> %F A383479 a(n) = [x^n] 1/(1 - x - x^3)^(n+1). %F A383479 a(n) = (n+1) * A049140(n+1). %F A383479 a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-2*k,n-3*k). %p A383479 f:= proc(x,y) option remember; %p A383479 local t; %p A383479 t:= 0; %p A383479 if x >= 1 then t:= t + procname(x-1,y) fi; %p A383479 if x >= 3 then t:= t + procname(x-3,y) fi; %p A383479 if y >= 1 then t:= t + procname(x,y-1) fi; %p A383479 t %p A383479 end proc: %p A383479 f(0,0):= 1: %p A383479 seq(f(n,n),n=0..25); # _Robert Israel_, May 28 2025 %o A383479 (PARI) a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-2*k, n-3*k)); %Y A383479 Cf. A038112, A383480. %Y A383479 Cf. A049140, A144401, A370624. %K A383479 nonn %O A383479 0,2 %A A383479 _Seiichi Manyama_, Apr 28 2025