cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1).

This page as a plain text file.
%I A383479 #18 May 29 2025 08:06:11
%S A383479 1,2,6,24,100,420,1792,7752,33858,148940,658944,2929056,13070876,
%T A383479 58521344,262754040,1182619280,5334172518,24104916504,109111142376,
%U A383479 494630028200,2245300152480,10204575481320,46429481139000,211460450151600,963971663881200,4398118872144192
%N A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1).
%H A383479 Robert Israel, <a href="/A383479/b383479.txt">Table of n, a(n) for n = 0..1492</a>
%F A383479 a(n) = [x^n] 1/(1 - x - x^3)^(n+1).
%F A383479 a(n) = (n+1) * A049140(n+1).
%F A383479 a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-2*k,n-3*k).
%p A383479 f:= proc(x,y) option remember;
%p A383479      local t;
%p A383479      t:= 0;
%p A383479      if x >= 1 then t:= t + procname(x-1,y) fi;
%p A383479      if x >= 3 then t:= t + procname(x-3,y) fi;
%p A383479      if y >= 1 then t:= t + procname(x,y-1) fi;
%p A383479      t
%p A383479 end proc:
%p A383479 f(0,0):= 1:
%p A383479 seq(f(n,n),n=0..25); # _Robert Israel_, May 28 2025
%o A383479 (PARI) a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-2*k, n-3*k));
%Y A383479 Cf. A038112, A383480.
%Y A383479 Cf. A049140, A144401, A370624.
%K A383479 nonn
%O A383479 0,2
%A A383479 _Seiichi Manyama_, Apr 28 2025