cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1).

This page as a plain text file.
%I A383480 #19 May 29 2025 10:42:07
%S A383480 1,2,6,20,75,294,1176,4752,19350,79310,326898,1353768,5628441,
%T A383480 23478700,98217840,411879264,1730924700,7287941340,30736775190,
%U A383480 129825892000,549096132585,2325216522420,9857299586700,41830206233400,177673556967075,755307883986084,3213402383779812
%N A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1).
%H A383480 Robert Israel, <a href="/A383480/b383480.txt">Table of n, a(n) for n = 0..1564</a>
%F A383480 a(n) = [x^n] 1/(1 - x - x^4)^(n+1).
%F A383480 a(n) = (n+1) * A063021(n+1).
%F A383480 a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-3*k,n-4*k).
%p A383480 f:= proc(x,y) option remember;
%p A383480      local t;
%p A383480      t:= 0;
%p A383480      if x >= 1 then t:= t + procname(x-1,y) fi;
%p A383480      if x >= 4 then t:= t + procname(x-4,y) fi;
%p A383480      if y >= 1 then t:= t + procname(x,y-1) fi;
%p A383480      t
%p A383480 end proc:
%p A383480 f(0,0):= 1:
%p A383480 seq(f(n,n),n=0..26); # _Robert Israel_, May 28 2025
%o A383480 (PARI) a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-3*k, n-4*k));
%Y A383480 Cf. A038112, A383479.
%Y A383480 Cf. A063021, A383481.
%K A383480 nonn
%O A383480 0,2
%A A383480 _Seiichi Manyama_, Apr 28 2025