This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383480 #19 May 29 2025 10:42:07 %S A383480 1,2,6,20,75,294,1176,4752,19350,79310,326898,1353768,5628441, %T A383480 23478700,98217840,411879264,1730924700,7287941340,30736775190, %U A383480 129825892000,549096132585,2325216522420,9857299586700,41830206233400,177673556967075,755307883986084,3213402383779812 %N A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1). %H A383480 Robert Israel, <a href="/A383480/b383480.txt">Table of n, a(n) for n = 0..1564</a> %F A383480 a(n) = [x^n] 1/(1 - x - x^4)^(n+1). %F A383480 a(n) = (n+1) * A063021(n+1). %F A383480 a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-3*k,n-4*k). %p A383480 f:= proc(x,y) option remember; %p A383480 local t; %p A383480 t:= 0; %p A383480 if x >= 1 then t:= t + procname(x-1,y) fi; %p A383480 if x >= 4 then t:= t + procname(x-4,y) fi; %p A383480 if y >= 1 then t:= t + procname(x,y-1) fi; %p A383480 t %p A383480 end proc: %p A383480 f(0,0):= 1: %p A383480 seq(f(n,n),n=0..26); # _Robert Israel_, May 28 2025 %o A383480 (PARI) a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-3*k, n-4*k)); %Y A383480 Cf. A038112, A383479. %Y A383480 Cf. A063021, A383481. %K A383480 nonn %O A383480 0,2 %A A383480 _Seiichi Manyama_, Apr 28 2025