This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383486 #20 Apr 29 2025 04:52:08 %S A383486 1,9,5,0,1,3,5,8,3,2,6,7,3,1,8,9,9,5,7,9,5,4,5,2,2,1,2,5,2,5,6,8,7,4, %T A383486 5,9,6,0,3,3,4,1,3,5,8,8,0,5,5,0,2,8,7,1,6,0,5,2,3,1,3,9,0,4,4,3,1,2, %U A383486 7,7,4,1,6,5,4,7,9,2,3,6,3,3,1,4,2,6,3,9,8,7,7,1,1,0,4,1,7,8,2,5,5,1,5,8,8 %N A383486 Decimal expansion Sum_{p primes} (p^2 + p^4)*log(p)^3/(p^6 - 3*p^4 + 3*p^2 -1). %F A383486 Equals (3*zeta''(2)*zeta'(2)*zeta(2) - zeta'''(2)*zeta(2)^2 - 2*zeta'(2)^3)/zeta(2)^3. [formula found by Bill Allombert] %e A383486 1.950135832673189957954522125256874... %t A383486 RealDigits[-(Zeta'''[2]*Zeta[2]^2 - 3*Zeta''[2]*Zeta'[2]*Zeta[2] + %t A383486 2*Zeta'[2]^3)/Zeta[2]^3, 10, 105][[1]] %t A383486 (* Sum_{primes p} f[p]*log[p]^elog, elog > 0 *) $MaxExtraPrecision = 1000; Clear[f]; f[p_] := (p^2 + p^4)/(p^6 - 3*p^4 + 3*p^2 - 1); elog = 3; Do[cc = Rest[CoefficientList[Series[f[1/x], {x, 0, m}], x, m + 1]]; Print[Sum[Log[Prime[k]]^elog*f[Prime[k]], {k, 1, 100}] + N[Sum[Indexed[cc, n]*((-1)^elog*Derivative[elog][PrimeZetaP][n] - Sum[Log[Prime[k]]^elog/Prime[k]^n, {k, 1, 100}]), {n, 2, m}], 110]], {m, 100, 500, 100}] (* _Vaclav Kotesovec_, Apr 28 2025 *) %o A383486 (PARI) %o A383486 /* procedure by Bill Allombert * / %o A383486 /* this version requires PARI 2.18.1 and up */ %o A383486 SumEulerLog(f,s=1,a=2,d=1)= %o A383486 { %o A383486 my(p=variable(f)); %o A383486 if(type(d)!="t_INT",error("incorrect type in SumEulerLog")); %o A383486 if (d<0, %o A383486 d=-d; %o A383486 for(i=1,d, f=deriv(f)*p); %o A383486 (-1)^d*intnum(t=1,[oo,log(2)*s],(t-1)^(d-1)*sumeulerrat(f,t*s,a))/gamma(d)*s^d %o A383486 ,d==0, %o A383486 sumeulerrat(f,s,a) %o A383486 ,d>0, %o A383486 my(prec=getlocalbitprec(),F=f); %o A383486 f = subst(f,p,1/p)+O(p^prec); %o A383486 for(i=1,d, f=intformal(f/p)); %o A383486 f = truncate(f); %o A383486 my(t=0, N=max(a, ceil((2^prec*normlp(f))^(1/(poldegree(f)*s))))); %o A383486 forprime(l=a,N-1,t+=subst(F,p,l^s)*log(l)^d); %o A383486 t+(-1)^d*derivnum(t=1,sumeulerrat(subst(f,p,1/p),t*s,N),d)/s^d); %o A383486 } %o A383486 SumEulerLog( (p^2+p)/(p^3-3*p^2+3*p-1),2,,3) %Y A383486 Cf. A345364, A383224. %K A383486 nonn,cons %O A383486 1,2 %A A383486 _Artur Jasinski_, Apr 28 2025