This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383488 #8 May 08 2025 21:06:15 %S A383488 12,18,20,24,30,36,40,42,48,54,56,60,66,70,72,78,80,84,88,90,96,99, %T A383488 100,102,104,105,108,110,112,114,120,126,130,132,138,140,144,150,154, %U A383488 156,160,162,168,170,174,176,180,186,189,192,196,198,200,204,208,210,216 %N A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)). %C A383488 Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1]. %H A383488 Felix Huber, <a href="/A383488/b383488.txt">Table of n, a(n) for n = 1..10000</a> %e A383488 All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6. %e A383488 All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9. %e A383488 All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5. %p A383488 with(NumberTheory): %p A383488 A383488:=proc(n) %p A383488 option remember; %p A383488 local k,i,L; %p A383488 if n=1 then %p A383488 12 %p A383488 else %p A383488 for k from procname(n-1)+1 do %p A383488 L:=Divisors(k); %p A383488 for i to nops(L)-1 do %p A383488 if sigma(L[i])>L[i+1] then %p A383488 return k %p A383488 fi %p A383488 od %p A383488 od %p A383488 fi; %p A383488 end proc; %p A383488 seq(A383488(n),n=1..57); %Y A383488 Supersequence of A008594, A008600, A008602, A008606, A044102, A135628. %Y A383488 Cf. A000203, A002808, A027750, A109042, A383360, A383489. %K A383488 nonn %O A383488 1,1 %A A383488 _Felix Huber_, May 03 2025