This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383489 #11 May 13 2025 23:59:10 %S A383489 1,1,1,4,2,5,3,2,6,2,1,7,2,1,8,1,6,7,1,6,8,1,2,1,1,1,8,1,4,1,11,4,1,7, %T A383489 1,6,11,5,1,6,8,3,11,1,1,3,13,1,1,10,1,5,5,6,3,9,12,4,1,7,1,6,4,1,15, %U A383489 1,13,1,1,4,11,1,10,1,6,11,1,1,1,14,4,2,13 %N A383489 a(n) is the number of divisors d_i(m) for which a divisor d_j(m) exists such that d_i(m) < d_j(m) < sigma(d_i(m)) where m = A383488(n). %H A383489 Felix Huber, <a href="/A383489/b383489.txt">Table of n, a(n) for n = 1..10000</a> %e A383489 The a(4) = 4 divisors d_i(A383488(4)) = d_i(24) are 4, 6, 8 and 12 because sigma(4) = 7 > 6, sigma(6) = 12 > 8, sigma(8) = 15 > 12 and sigma(12) = 28 > 24. %p A383489 with(NumberTheory): %p A383489 A383488:=proc(n) %p A383489 option remember; %p A383489 local k,i,L; %p A383489 if n=1 then %p A383489 12 %p A383489 else %p A383489 for k from procname(n-1)+1 do %p A383489 L:=Divisors(k); %p A383489 for i to nops(L)-1 do %p A383489 if sigma(L[i])>L[i+1] then %p A383489 return k %p A383489 fi %p A383489 od %p A383489 od %p A383489 fi; %p A383489 end proc; %p A383489 A383489:=proc(n) %p A383489 local a,i,L; %p A383489 L:=Divisors(A383488(n)); %p A383489 a:=0; %p A383489 for i to nops(L)-1 do %p A383489 if sigma(L[i])>L[i+1] then %p A383489 a:=a+1 %p A383489 fi %p A383489 od; %p A383489 return a %p A383489 end proc; %p A383489 seq(A383489(n),n=1..83); %Y A383489 Cf. A000203, A002808, A027750, A109042, A383360, A383488. %K A383489 nonn %O A383489 1,4 %A A383489 _Felix Huber_, May 08 2025