This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383502 #18 May 30 2025 00:49:35 %S A383502 2,4,6,2,12,20,6,10,27,16,85,3,35,78,95,6,38,96,19,27,9,66,157,171,81, %T A383502 191,12,127,52,3,36,275,88,589,283,40,290,952,47,10,1213,750,572,84, %U A383502 126,2,282,162,125,480,26,66,185,157,1490,1310,832,1321,352 %N A383502 Position of the first instance of prime(n), in base 3, in the ternary representation of Pi after the ternary point. %C A383502 Positions are numbered starting from 1 for the first ternary digit after the ternary point in Pi. %e A383502 The ternary digits of Pi and their numbering, after the ternary point, begin %e A383502 1 2 3 4 5 6 7 8 9 ... %e A383502 0 1 . 0 2 1 1 0 1 2 2 2 2 0 1 0 2 ... %e A383502 \---/ %e A383502 prime(7) is 17, or 122_3, which first appears at position 6. %o A383502 (Python) %o A383502 import gmpy2 %o A383502 from sympy import isprime %o A383502 def to_base3(n): %o A383502 if n == 0: return '0' %o A383502 d = [] %o A383502 while n: d.append(str(n % 3)); n //= 3 %o A383502 return ''.join(reversed(d)) %o A383502 gmpy2.get_context().precision = 1200000 %o A383502 pi_ternary = gmpy2.digits(gmpy2.const_pi(),3)[0][4:] # skip "10." %o A383502 out = [] %o A383502 for p in range(2, 280): %o A383502 if isprime(p): %o A383502 pos = pi_ternary.find(to_base3(p)) + 1 %o A383502 out.append(pos) %o A383502 print(out) %Y A383502 Cf. A000040, A178707, A007089, A004602, A004601. %K A383502 base,nonn %O A383502 1,1 %A A383502 _James S. DeArmon_, Apr 28 2025