cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383506 Number of non Wilf section-sum partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 12, 18, 25, 32, 42, 55, 64, 87, 101, 128, 147, 192, 218, 273, 314, 394, 450, 552, 631, 772, 886, 1066, 1221, 1458, 1677, 1980, 2269, 2672, 3029
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(12) = 12 partitions (A=10, B=11):
  (31)  (32)  (51)  (43)  (53)    (54)  (64)    (65)    (75)
        (41)        (52)  (62)    (63)  (73)    (74)    (84)
                    (61)  (71)    (72)  (82)    (83)    (93)
                          (3311)  (81)  (91)    (92)    (A2)
                                        (631)   (A1)    (B1)
                                        (3322)  (632)   (732)
                                        (4411)  (641)   (831)
                                                (731)   (5511)
                                                (6311)  (6411)
                                                        (7311)
                                                        (63111)
                                                        (333111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A351592 (A384006).
The Look-and-Say case is A383511 (A383518).
These partitions are ranked by (A383514).
For Wilf instead of non Wilf we have A383519 (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointDiffs[y_]:=Select[Tuples[IntegerPartitions /@ Differences[Prepend[Sort[y],0]]], UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n], disjointDiffs[#]!={} && !UnsameQ@@Length/@Split[#]&]],{n,0,15}]