cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383507 Number of Wilf and conjugate Wilf integer partitions of n.

This page as a plain text file.
%I A383507 #7 May 15 2025 08:23:11
%S A383507 1,1,2,2,3,3,6,7,9,12,14,19,20,27,30,31,40,50,56,68,76,86,112,126,139,
%T A383507 170,197,216,251,297,317,378,411,466,521,607,621,745,791,892,975,1123,
%U A383507 1163,1366,1439,1635,1757,2021,2080,2464,2599,2882,3116,3572,3713
%N A383507 Number of Wilf and conjugate Wilf integer partitions of n.
%C A383507 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).
%H A383507 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%F A383507 These partitions have Heinz numbers A130091 /\ A383512.
%e A383507 The a(1) = 1 through a(8) = 9 partitions:
%e A383507   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A383507        (11)  (111)  (22)    (311)    (33)      (322)      (44)
%e A383507                     (1111)  (11111)  (222)     (331)      (332)
%e A383507                                      (411)     (511)      (611)
%e A383507                                      (3111)    (4111)     (2222)
%e A383507                                      (111111)  (31111)    (5111)
%e A383507                                                (1111111)  (41111)
%e A383507                                                           (311111)
%e A383507                                                           (11111111)
%t A383507 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#] && UnsameQ@@DeleteCases[Differences[Append[#,0]],0]&]],{n,0,30}]
%Y A383507 A048768 gives Look-and-Say fixed points, counted by A217605.
%Y A383507 A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
%Y A383507 A239455 counts Look-and-Say partitions, complement A351293.
%Y A383507 A325349 counts partitions with distinct augmented differences, ranks A325366.
%Y A383507 A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
%Y A383507 A381431 is the section-sum transform, union A381432, complement A381433.
%Y A383507 A383534 gives 0-prepended differences by rank, see A325351.
%Y A383507 A383709 counts Wilf partitions with distinct 0-appended differences.
%Y A383507 Cf. A047966, A048767, A111133, A320348, A325324, A325325, A325367, A325368, A325388, A351294, A383506.
%K A383507 nonn
%O A383507 0,3
%A A383507 _Gus Wiseman_, May 14 2025