This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383508 #13 May 18 2025 14:37:34 %S A383508 1,1,2,2,3,3,6,7,9,12,14,19,22,27,30,35,42,50,58,68,82,92,112,126,149, %T A383508 174,199,225,263,299,337,388,435,488,545,635,681,775,841,948,1051, %U A383508 1181,1271,1446,1553,1765,1896,2141,2285,2608,2799 %N A383508 Number of integer partitions of n that are both Look-and-Say and section-sum partitions. %C A383508 An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294. %C A383508 An integer partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432. %e A383508 The a(1) = 1 through a(8) = 9 partitions: %e A383508 (1) (2) (3) (4) (5) (6) (7) (8) %e A383508 (11) (111) (22) (311) (33) (322) (44) %e A383508 (1111) (11111) (222) (331) (332) %e A383508 (411) (511) (611) %e A383508 (3111) (4111) (2222) %e A383508 (111111) (31111) (5111) %e A383508 (1111111) (41111) %e A383508 (311111) %e A383508 (11111111) %t A383508 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&]; %t A383508 conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A383508 Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]!={}&]], {n,0,30}] %Y A383508 Ranking sequences are shown in parentheses below. %Y A383508 The non Wilf case is A383511 (A383518). %Y A383508 These partitions are ranked by (A383515). %Y A383508 A000041 counts integer partitions, strict A000009. %Y A383508 A047993 counts partitions with max part = length (A106529). %Y A383508 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A383508 A122111 represents conjugation in terms of Heinz numbers. %Y A383508 A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295). %Y A383508 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A383508 A336866 counts non Wilf partitions (A130092), conjugate (A383513). %Y A383508 A351592 counts non Wilf Look-and-Say partitions (A384006). %Y A383508 A383509 counts partitions that are Look-and-Say but not section-sum (A383516). %Y A383508 A383509 counts partitions that are not Look-and-Say but are section-sum (A384007). %Y A383508 A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517). %Y A383508 Cf. A033461, A047966, A048767, A320348, A325324, A325325, A381431, A383519, A383530, A383709. %K A383508 nonn %O A383508 0,3 %A A383508 _Gus Wiseman_, May 17 2025