This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383509 #9 May 18 2025 14:37:19 %S A383509 0,0,0,0,1,2,1,3,4,4,7,9,11,18,25,30,41,55,63,87,98,125,147,192,213, %T A383509 271,313,389,444,551,621,767,874,1055,1209,1444,1646,1965,2244,2644, %U A383509 2991 %N A383509 Number of Look-and-Say partitions of n that are not section-sum partitions. %C A383509 A partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294. %C A383509 A partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432. %e A383509 The a(4) = 1 through a(11) = 9 partitions: %e A383509 211 221 21111 2221 422 22221 442 222221 %e A383509 2111 22111 22211 222111 4222 322211 %e A383509 211111 221111 2211111 222211 332111 %e A383509 2111111 21111111 322111 422111 %e A383509 2221111 2222111 %e A383509 22111111 3221111 %e A383509 211111111 22211111 %e A383509 221111111 %e A383509 2111111111 %e A383509 Conjugates of the a(4) = 1 through a(11) = 9 partitions: %e A383509 (3,1) (3,2) (5,1) (4,3) (5,3) (5,4) (6,4) (6,5) %e A383509 (4,1) (5,2) (6,2) (6,3) (7,3) (7,4) %e A383509 (6,1) (7,1) (7,2) (8,2) (8,3) %e A383509 (3,3,1,1) (8,1) (9,1) (9,2) %e A383509 (6,3,1) (10,1) %e A383509 (3,3,2,2) (6,3,2) %e A383509 (4,4,1,1) (6,4,1) %e A383509 (7,3,1) %e A383509 (6,3,1,1) %t A383509 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&]; %t A383509 conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]]; %t A383509 Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]=={}&]], {n,0,30}] %Y A383509 Ranking sequences are shown in parentheses below. %Y A383509 These partitions are ranked by (A383516). %Y A383509 A000041 counts integer partitions, strict A000009. %Y A383509 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A383509 A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295). %Y A383509 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A383509 A336866 counts non Wilf partitions (A130092), conjugate (A383513). %Y A383509 A351592 counts non Wilf Look-and-Say partitions (A384006). %Y A383509 A383508 counts partitions that are both Look-and-Say and section-sum (A383515). %Y A383509 A383509 counts partitions that are not Look-and-Say but are section-sum (A384007). %Y A383509 A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517). %Y A383509 A383519 counts section-sum Wilf partitions (A383520). %Y A383509 Cf. A047966, A048767, A320348, A325324, A325325, A353837, A381431, A383511, A383530, A383709. %K A383509 nonn,more %O A383509 0,6 %A A383509 _Gus Wiseman_, May 18 2025