This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383512 #10 May 15 2025 08:23:15 %S A383512 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,22,23,25,26,27,28,29,31, %T A383512 32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,58, %U A383512 59,61,62,64,67,68,69,71,73,74,75,76,77,79,80,81,82,83,85 %N A383512 Heinz numbers of conjugate Wilf partitions. %C A383512 First differs from A364347 in having 130 and lacking 110. %C A383512 First differs from A381432 in lacking 65 and 133. %C A383512 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A383512 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512). %H A383512 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A383512 The terms together with their prime indices begin: %e A383512 1: {} 17: {7} 35: {3,4} %e A383512 2: {1} 19: {8} 37: {12} %e A383512 3: {2} 20: {1,1,3} 38: {1,8} %e A383512 4: {1,1} 22: {1,5} 39: {2,6} %e A383512 5: {3} 23: {9} 40: {1,1,1,3} %e A383512 7: {4} 25: {3,3} 41: {13} %e A383512 8: {1,1,1} 26: {1,6} 43: {14} %e A383512 9: {2,2} 27: {2,2,2} 44: {1,1,5} %e A383512 10: {1,3} 28: {1,1,4} 45: {2,2,3} %e A383512 11: {5} 29: {10} 46: {1,9} %e A383512 13: {6} 31: {11} 47: {15} %e A383512 14: {1,4} 32: {1,1,1,1,1} 49: {4,4} %e A383512 15: {2,3} 33: {2,5} 50: {1,3,3} %e A383512 16: {1,1,1,1} 34: {1,7} 51: {2,7} %t A383512 prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383512 Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&] %Y A383512 Partitions of this type are counted by A098859. %Y A383512 The conjugate version is A130091, complement A130092. %Y A383512 Including differences of 0 gives A325367, counted by A325324. %Y A383512 The strict case is A325388, counted by A320348. %Y A383512 The complement is A383513, counted by A336866. %Y A383512 Also requiring distinct multiplicities gives A383532, counted by A383507. %Y A383512 These are the positions of strict rows in A383534, or squarefree numbers in A383535. %Y A383512 A000040 lists the primes, differences A001223. %Y A383512 A048767 is the Look-and-Say transform, union A351294, complement A351295. %Y A383512 A055396 gives least prime index, greatest A061395. %Y A383512 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A383512 A122111 represents conjugation in terms of Heinz numbers. %Y A383512 A239455 counts Look-and-Say partitions, complement A351293. %Y A383512 A325349 counts partitions with distinct augmented differences, ranks A325366. %Y A383512 A383530 counts partitions that are not Wilf or conjugate Wilf, ranks A383531. %Y A383512 A383709 counts Wilf partitions with distinct augmented differences, ranks A383712. %Y A383512 Cf. A000720, A005117, A048768, A109298, A325325, A325351, A325355, A325368, A381431, A383506. %K A383512 nonn %O A383512 1,2 %A A383512 _Gus Wiseman_, May 13 2025