This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383515 #5 May 19 2025 09:44:07 %S A383515 1,2,3,4,5,7,8,9,11,13,16,17,19,20,23,25,27,28,29,31,32,37,40,41,43, %T A383515 44,45,47,49,50,52,53,56,59,61,64,67,68,71,73,75,76,79,80,81,83,88,89, %U A383515 92,97,98,99,101,103,104,107,109,112,113,116,117,121,124,125 %N A383515 Heinz numbers of integer partitions that are both Look-and-Say and section-sum. %C A383515 First differs from A383532 in having 325. %C A383515 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A383515 An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432. %C A383515 An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294. %e A383515 The terms together with their prime indices begin: %e A383515 1: {} %e A383515 2: {1} %e A383515 3: {2} %e A383515 4: {1,1} %e A383515 5: {3} %e A383515 7: {4} %e A383515 8: {1,1,1} %e A383515 9: {2,2} %e A383515 11: {5} %e A383515 13: {6} %e A383515 16: {1,1,1,1} %e A383515 17: {7} %e A383515 19: {8} %e A383515 20: {1,1,3} %e A383515 23: {9} %e A383515 25: {3,3} %e A383515 27: {2,2,2} %e A383515 28: {1,1,4} %e A383515 29: {10} %e A383515 31: {11} %e A383515 32: {1,1,1,1,1} %t A383515 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; %t A383515 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383515 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A383515 Select[Range[100],disjointFamilies[prix[#]]!={}&&disjointFamilies[conj[prix[#]]]!={}&] %Y A383515 Ranking sequences are shown in parentheses below. %Y A383515 These partitions are counted by A383508. %Y A383515 A048767 is the Look-and-Say transform. %Y A383515 A048768 gives Look-and-Say fixed points, counted by A217605. %Y A383515 A055396 gives least prime index, greatest A061395. %Y A383515 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A383515 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A383515 A122111 represents conjugation in terms of Heinz numbers. %Y A383515 A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295). %Y A383515 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A383515 A336866 counts non Wilf partitions (A130092), conjugate (A383513). %Y A383515 A381431 is the section-sum transform. %Y A383515 A383509 counts partitions that are Look-and-Say but not section-sum (A383516). %Y A383515 A383509 counts partitions that are not Look-and-Say but are section-sum (A384007). %Y A383515 A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517). %Y A383515 A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518). %Y A383515 Cf. A000720, A001223, A047966, A051903, A109298, A212166, A238745, A325368, A351592, A384006. %K A383515 nonn %O A383515 1,2 %A A383515 _Gus Wiseman_, May 18 2025