This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383519 #7 May 20 2025 21:58:37 %S A383519 1,1,2,2,3,3,6,7,9,12,14,19,21,27,30,33,41,50,57,68,79,89,112,126,144, %T A383519 172,198,220,257,298,327,383,423,477,533,621,650,760,816,920,1013 %N A383519 Number of section-sum partitions of n that have all distinct multiplicities (Wilf). %C A383519 An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432. %C A383519 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). %e A383519 The a(1) = 1 through a(8) = 9 partitions: %e A383519 (1) (2) (3) (4) (5) (6) (7) (8) %e A383519 (11) (111) (22) (311) (33) (322) (44) %e A383519 (1111) (11111) (222) (331) (332) %e A383519 (411) (511) (611) %e A383519 (3111) (4111) (2222) %e A383519 (111111) (31111) (5111) %e A383519 (1111111) (41111) %e A383519 (311111) %e A383519 (11111111) %t A383519 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; %t A383519 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383519 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A383519 Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}] %Y A383519 Ranking sequences are shown in parentheses below. %Y A383519 For Look-and-Say instead of section-sum we have A098859 (A130091), conjugate (A383512). %Y A383519 For non Wilf instead of Wilf we have A383506 (A383514). %Y A383519 These partitions are ranked by (A383520). %Y A383519 A000041 counts integer partitions, strict A000009. %Y A383519 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A383519 A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295). %Y A383519 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A383519 A336866 counts non Wilf partitions (A130092), conjugate (A383513). %Y A383519 Cf. A047966, A320348, A325324, A325325, A351592, A353837, A381431, A383530, A383709, A384006. %K A383519 nonn,more %O A383519 0,3 %A A383519 _Gus Wiseman_, May 19 2025