cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383527 Partial sums of A005773.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 153, 420, 1170, 3293, 9339, 26642, 76363, 219728, 634312, 1836229, 5328346, 15494125, 45137995, 131712826, 384900937, 1126265986, 3299509114, 9676690939, 28407473191, 83470059532, 245465090758, 722406781935, 2127562036990, 6270020029353
Offset: 0

Views

Author

Mélika Tebni, Apr 29 2025

Keywords

Comments

For p prime of the form 4*k+3 (A002145), a(p) == 0 (mod p).
For p Pythagorean prime (A002144), a(p) - 2 == 0 (mod p).
a(n) (mod 2) = A010059(n).
a(A000069(n+1)) is even.
a(A001969(n+1)) is odd.

Crossrefs

Programs

  • Maple
    gf := (1 + sqrt((1 + x) / (1 - 3*x))) / (2*(1 - x)):
    a := n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n = 0 .. 29);
    # Recurrence:
    a:= proc(n) option remember; `if`(n<=2, 2^n, 3*a(n-1) - (6/n-1)*a(n-2) + (6/n-3)*a(n-3)) end:
    seq(a(n), n = 0 .. 29);
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == 3*a[n-1] - (6-n)*a[n-2]/n + 3*(2-n)*a[n-3]/n, a[0] == 1, a[1] == 2, a[2] == 4}, a, {n, 0, 30}]] (* Paolo Xausa, May 05 2025 *)
  • Python
    from math import comb as C
    def a(n):
      return sum(C(n, k)*abs(sum((-1)**j*C(k, j) for j in range(k//2 + 1))) for k in range(n + 1))
    print([a(n) for n in range(30)])

Formula

First differences of A211278.
a(n) = Sum_{k=0..n} A167630(n, k).
Binomial transform of A210736 (see Python program).
G.f.: (1 + sqrt((1 + x) / (1 - 3*x))) / (2*(1 - x)).
E.g.f.: (Integral_{x=-oo..oo} BesselI(0,2*x) dx + (1 + BesselI(0,2*x)) / 2)*exp(x).
Recurrence: n*a(n) = 3*n*a(n-1) - (6-n)*a(n-2) + 3*(2-n)*a(n-3). If n <= 2, a(n) = 2^n.
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, May 02 2025
From Mélika Tebni, May 09 2025: (Start)
a(n) = A257520(n) + A097893(n-1) for n > 0.
a(n) = Sum_{j=0..n}(Sum_{k=0..j} A122896(j, k)).
a(n+2) - 3*a(n+1) + 2*a(n) = A005774(n).
a(n+2) - 4*a(n+1) + 4*a(n) - a(n-1) = A005775(n) for n >= 3. (End)