This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383530 #8 May 15 2025 08:23:19 %S A383530 0,0,0,1,0,0,3,2,5,12,14,19,35,38,55,83,107,137,209,252,359,462,612, %T A383530 757,1032,1266,1649,2050,2617,3210,4111,4980,6262,7659,9479,11484, %U A383530 14224,17132,20962,25259,30693,36744,44517,53043,63850,75955,90943,107721,128485 %N A383530 Number of non Wilf and non conjugate Wilf integer partitions of n. %C A383530 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512). %H A383530 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %F A383530 These partitions have Heinz numbers A130092 /\ A383513. %e A383530 The a(0) = 0 through a(9) = 12 partitions: %e A383530 . . . (21) . . (42) (421) (431) (63) %e A383530 (321) (3211) (521) (432) %e A383530 (2211) (3221) (531) %e A383530 (4211) (621) %e A383530 (32111) (3321) %e A383530 (4221) %e A383530 (4311) %e A383530 (5211) %e A383530 (32211) %e A383530 (42111) %e A383530 (222111) %e A383530 (321111) %t A383530 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]]; %t A383530 Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}] %Y A383530 Negating both sides gives A383507, ranks A383532. %Y A383530 These partitions are ranked by A383531. %Y A383530 A048767 is the Look-and-Say transform, union A351294, complement A351295. %Y A383530 A098859 counts Wilf partitions, ranks A130091, conjugate A383512. %Y A383530 A239455 counts Look-and-Say partitions, complement A351293. %Y A383530 A336866 counts non Wilf partitions, ranks A130092, conjugate A383513. %Y A383530 A381431 is the section-sum transform, union A381432, complement A381433. %Y A383530 A383534 gives 0-prepended differences by rank, see A325351. %Y A383530 A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712. %Y A383530 Cf. A033461, A047966, A111133, A320348, A325324, A325325, A325349, A325367, A325368, A325388, A383506. %K A383530 nonn %O A383530 0,7 %A A383530 _Gus Wiseman_, May 14 2025