cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.

This page as a plain text file.
%I A383530 #8 May 15 2025 08:23:19
%S A383530 0,0,0,1,0,0,3,2,5,12,14,19,35,38,55,83,107,137,209,252,359,462,612,
%T A383530 757,1032,1266,1649,2050,2617,3210,4111,4980,6262,7659,9479,11484,
%U A383530 14224,17132,20962,25259,30693,36744,44517,53043,63850,75955,90943,107721,128485
%N A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.
%C A383530 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).
%H A383530 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%F A383530 These partitions have Heinz numbers A130092 /\ A383513.
%e A383530 The a(0) = 0 through a(9) = 12 partitions:
%e A383530   .  .  .  (21)  .  .  (42)    (421)   (431)    (63)
%e A383530                        (321)   (3211)  (521)    (432)
%e A383530                        (2211)          (3221)   (531)
%e A383530                                        (4211)   (621)
%e A383530                                        (32111)  (3321)
%e A383530                                                 (4221)
%e A383530                                                 (4311)
%e A383530                                                 (5211)
%e A383530                                                 (32211)
%e A383530                                                 (42111)
%e A383530                                                 (222111)
%e A383530                                                 (321111)
%t A383530 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
%t A383530 Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}]
%Y A383530 Negating both sides gives A383507, ranks A383532.
%Y A383530 These partitions are ranked by A383531.
%Y A383530 A048767 is the Look-and-Say transform, union A351294, complement A351295.
%Y A383530 A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
%Y A383530 A239455 counts Look-and-Say partitions, complement A351293.
%Y A383530 A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
%Y A383530 A381431 is the section-sum transform, union A381432, complement A381433.
%Y A383530 A383534 gives 0-prepended differences by rank, see A325351.
%Y A383530 A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.
%Y A383530 Cf. A033461, A047966, A111133, A320348, A325324, A325325, A325349, A325367, A325368, A325388, A383506.
%K A383530 nonn
%O A383530 0,7
%A A383530 _Gus Wiseman_, May 14 2025