cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383531 Heinz numbers of integer partitions that do not have distinct multiplicities (Wilf) or distinct nonzero 0-appended differences (conjugate Wilf).

This page as a plain text file.
%I A383531 #11 May 16 2025 18:50:51
%S A383531 6,21,30,36,42,60,65,66,70,78,84,90,102,105,110,114,120,126,132,133,
%T A383531 138,140,150,154,156,165,168,174,180,186,198,204,210,216,220,222,228,
%U A383531 231,234,238,240,246,252,258,264,270,273,276,280,282,286,294,300,306,308
%N A383531 Heinz numbers of integer partitions that do not have distinct multiplicities (Wilf) or distinct nonzero 0-appended differences (conjugate Wilf).
%C A383531 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A383531 An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).
%F A383531 Equals A130092 /\ A383513.
%e A383531 The terms together with their prime indices begin:
%e A383531     6: {1,2}
%e A383531    21: {2,4}
%e A383531    30: {1,2,3}
%e A383531    36: {1,1,2,2}
%e A383531    42: {1,2,4}
%e A383531    60: {1,1,2,3}
%e A383531    65: {3,6}
%e A383531    66: {1,2,5}
%e A383531    70: {1,3,4}
%e A383531    78: {1,2,6}
%e A383531    84: {1,1,2,4}
%e A383531    90: {1,2,2,3}
%e A383531   102: {1,2,7}
%e A383531   105: {2,3,4}
%e A383531   110: {1,3,5}
%e A383531   114: {1,2,8}
%e A383531   120: {1,1,1,2,3}
%t A383531 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A383531 conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A383531 Select[Range[100],!UnsameQ@@Length/@Split[prix[#]] && !UnsameQ@@Length/@Split[conj[prix[#]]]&]
%Y A383531 These partitions are counted by A383530.
%Y A383531 Negating both sides gives A383532, counted by A383507.
%Y A383531 A048767 is the Look-and-Say transform, union A351294, complement A351295.
%Y A383531 A055396 gives least prime index, greatest A061395.
%Y A383531 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A383531 A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
%Y A383531 A122111 represents conjugation in terms of Heinz numbers.
%Y A383531 A325324 counts integer partitions with distinct 0-appended differences, ranks A325367.
%Y A383531 A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
%Y A383531 A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.
%Y A383531 Cf. A001223, A047966, A181819, A238745, A320348, A325325, A325349, A325366, A325368, A325388, A381431, A383506.
%K A383531 nonn
%O A383531 1,1
%A A383531 _Gus Wiseman_, May 15 2025