A383532 Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct nonzero 0-appended differences (conjugate Wilf).
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 13: {6} 16: {1,1,1,1} 17: {7} 19: {8} 20: {1,1,3} 23: {9} 25: {3,3} 27: {2,2,2} 28: {1,1,4} 29: {10} 31: {11} 32: {1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; paug[y_]:=-DeleteCases[Differences[Append[y,0]],0]; Select[Range[100], UnsameQ@@Last/@FactorInteger[#] && UnsameQ@@paug[Reverse[prix[#]]]&]
Comments