This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383541 #27 May 09 2025 02:38:33 %S A383541 1,6,19,22,710,1146408,10838702,80143857,245850922,411557987, %T A383541 1068966896 %N A383541 Positive numbers k such that (cos k)^k sets a new record. %F A383541 Conjecture: a(n) = A002485(n+7) for n >= 9. - _Jakub Buczak_, May 05 2025 %e A383541 The first few values of (cos k)^k, k >= 1, are: %e A383541 cos(1)^1 = 0.540302305868139 %e A383541 cos(2)^2 = 0.173178189568194 %e A383541 cos(3)^3 = -0.97027693792150 %e A383541 cos(4)^4 = 0.182542548055270 %e A383541 cos(5)^5 = 0.001836568887601 %e A383541 cos(6)^6 = 0.783591241730686 %e A383541 cos(7)^7 = 0.138422055397017 %e A383541 cos(8)^8 = 0.000000200865224 %e A383541 cos(9)^9 = -0.43273721139612 %e A383541 and the record high points are at k = 1, 6, 19, ... %t A383541 Module[{x, y, runningMax = 0, positions = {}}, %t A383541 x = Range[1, 10^6]; y = Cos[x]^x; %t A383541 Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}]; %t A383541 positions %t A383541 ] %o A383541 (Python) %o A383541 import numpy as np %o A383541 x = np.arange(1, 1+10**8) %o A383541 y = np.cos(x) ** x %o A383541 A383541 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))]) %Y A383541 Cf. A002485, A382564, A383540. %K A383541 nonn,more %O A383541 1,2 %A A383541 _Jwalin Bhatt_, Apr 29 2025 %E A383541 a(9)-a(11) from _Jakub Buczak_, May 05 2025