This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383550 #12 Apr 30 2025 09:14:11 %S A383550 1,0,0,1,0,1,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,1,0,3,1,3,0,1,0,0,0,0,0,0, %T A383550 0,0,1,0,4,2,6,2,4,0,1,0,0,0,0,0,0,0,0,0,0,1,0,5,3,10,6,10,3,5,0,1,0, %U A383550 0,0,0,0,0,0,0,0,0,0,0,1,0,6,4,15,12,21,12,15,4,6,0,1 %N A383550 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (2,0),(0,2),(3,3). %F A383550 A(n,k) = A(k,n). %F A383550 If n - k == 1 (mod 2), A(n,k) = 0. %F A383550 A(n,k) = A(n-2,k) + A(n,k-2) + A(n-3,k-3). %F A383550 G.f.: 1 / (1 - x^2 - y^2 - x^3*y^3). %e A383550 Square array A(n,k) begins: %e A383550 1, 0, 1, 0, 1, 0, 1, 0, 1, ... %e A383550 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A383550 1, 0, 2, 0, 3, 0, 4, 0, 5, ... %e A383550 0, 0, 0, 1, 0, 2, 0, 3, 0, ... %e A383550 1, 0, 3, 0, 6, 0, 10, 0, 15, ... %e A383550 0, 0, 0, 2, 0, 6, 0, 12, 0, ... %e A383550 1, 0, 4, 0, 10, 0, 21, 0, 38, ... %e A383550 0, 0, 0, 3, 0, 12, 0, 30, 0, ... %e A383550 1, 0, 5, 0, 15, 0, 38, 0, 82, ... %o A383550 (PARI) a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x^2-y^2-x^3*y^3), n), k); %Y A383550 Main diagonal gives A053442. %Y A383550 Cf. A027907, A383567. %K A383550 nonn,tabl %O A383550 0,13 %A A383550 _Seiichi Manyama_, Apr 30 2025