This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383551 #9 Apr 30 2025 09:13:48 %S A383551 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,15,21,15,6,1,1,7,21, %T A383551 37,37,21,7,1,1,8,28,59,76,59,28,8,1,1,9,36,88,138,138,88,36,9,1,1,10, %U A383551 45,125,230,282,230,125,45,10,1,1,11,55,171,360,522,522,360,171,55,11,1 %N A383551 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(3,3). %F A383551 A(n,k) = A(k,n). %F A383551 A(n,k) = A(n-1,k) + A(n,k-1) + A(n-3,k-3). %F A383551 G.f.: 1 / (1 - x - y - x^3*y^3). %e A383551 Square array A(n,k) begins: %e A383551 1, 1, 1, 1, 1, 1, 1, ... %e A383551 1, 2, 3, 4, 5, 6, 7, ... %e A383551 1, 3, 6, 10, 15, 21, 28, ... %e A383551 1, 4, 10, 21, 37, 59, 88, ... %e A383551 1, 5, 15, 37, 76, 138, 230, ... %e A383551 1, 6, 21, 59, 138, 282, 522, ... %e A383551 1, 7, 28, 88, 230, 522, 1065, ... %o A383551 (PARI) a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^3*y^3), n), k); %Y A383551 Main diagonal gives A376791. %K A383551 nonn,tabl %O A383551 0,5 %A A383551 _Seiichi Manyama_, Apr 30 2025