This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383552 #11 Apr 30 2025 09:11:40 %S A383552 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,12,12,5,1,1,6,18,26,18,6,1,1,7,25, %T A383552 47,47,25,7,1,1,8,33,76,101,76,33,8,1,1,9,42,114,189,189,114,42,9,1,1, %U A383552 10,52,162,321,404,321,162,52,10,1,1,11,63,221,508,772,772,508,221,63,11,1 %N A383552 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(2,2). %F A383552 A(n,k) = A(k,n). %F A383552 A(n,k) = A(n-1,k) + A(n,k-1) + A(n-2,k-2). %F A383552 G.f.: 1 / (1 - x - y - x^2*y^2). %e A383552 Square array A(n,k) begins: %e A383552 1, 1, 1, 1, 1, 1, 1, ... %e A383552 1, 2, 3, 4, 5, 6, 7, ... %e A383552 1, 3, 7, 12, 18, 25, 33, ... %e A383552 1, 4, 12, 26, 47, 76, 114, ... %e A383552 1, 5, 18, 47, 101, 189, 321, ... %e A383552 1, 6, 25, 76, 189, 404, 772, ... %e A383552 1, 7, 33, 114, 321, 772, 1645, ... %o A383552 (PARI) a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^2*y^2), n), k); %Y A383552 Main diagonal gives A349713. %Y A383552 Cf. A008288, A383551, A383566. %K A383552 nonn,tabl %O A383552 0,5 %A A383552 _Seiichi Manyama_, Apr 30 2025