This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383570 #20 Jul 20 2025 08:53:30 %S A383570 8,384,76032,62881792 %N A383570 Number of transversals in pine Latin squares of order 4n. %C A383570 A pine Latin square is a not necessarily canonical composite Latin square of order N=2*K formed from specially arranged cyclic Latin squares of order K. %C A383570 By construction, pine Latin square is determined one-to-one by the cyclic square used, so number of pine Latin squares of order N is equal to number of cyclic Latin squares of order N/2. %C A383570 All pine Latin squares are horizontally symmetric column-inverse Latin squares. %C A383570 All pine Latin squares for selected order N are isomorphic one to another as Latin squares, so they have same properties (number of transversals, intercalates, etc.). %C A383570 Pine Latin squares have interesting properties, for example, maximum known number of intercalates (see A383368 and A092237) for some orders N (at least N in {2, 4, 6, 10, 18}). %C A383570 Pine Latin squares do not exist for odd orders because they must be horizontally symmetric. %C A383570 Hypothesis: number of transversals in pine Latin squares of all orders N=4k+2 is zero (verified for orders N<=18). %H A383570 Richard Bean, <a href="https://www.researchgate.net/publication/2416446_Critical_Sets_in_Latin_Squares_and_Associated_Structures">Critical sets in Latin squares and associated structures</a>, Ph.D. Thesis, The University of Queensland, 2001. %H A383570 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2995">About the properties of pine Latin squares</a> (in Russian). %H A383570 Eduard I. Vatutin, <a href="/A383570/a383570.txt">Proving list (examples)</a>. %H A383570 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %e A383570 For order N=8 pine Latin square %e A383570 0 1 2 3 4 5 6 7 %e A383570 1 2 3 0 7 4 5 6 %e A383570 2 3 0 1 6 7 4 5 %e A383570 3 0 1 2 5 6 7 4 %e A383570 4 5 6 7 0 1 2 3 %e A383570 5 6 7 4 3 0 1 2 %e A383570 6 7 4 5 2 3 0 1 %e A383570 7 4 5 6 1 2 3 0 %e A383570 has 384 transversals. %e A383570 . %e A383570 For order N=10 pine Latin square %e A383570 0 1 2 3 4 5 6 7 8 9 %e A383570 1 2 3 4 0 9 5 6 7 8 %e A383570 2 3 4 0 1 8 9 5 6 7 %e A383570 3 4 0 1 2 7 8 9 5 6 %e A383570 4 0 1 2 3 6 7 8 9 5 %e A383570 5 6 7 8 9 0 1 2 3 4 %e A383570 6 7 8 9 5 4 0 1 2 3 %e A383570 7 8 9 5 6 3 4 0 1 2 %e A383570 8 9 5 6 7 2 3 4 0 1 %e A383570 9 5 6 7 8 1 2 3 4 0 %e A383570 has no transversals. %e A383570 . %e A383570 For order N=12 pine Latin square %e A383570 0 1 2 3 4 5 6 7 8 9 10 11 %e A383570 1 2 3 4 5 0 11 6 7 8 9 10 %e A383570 2 3 4 5 0 1 10 11 6 7 8 9 %e A383570 3 4 5 0 1 2 9 10 11 6 7 8 %e A383570 4 5 0 1 2 3 8 9 10 11 6 7 %e A383570 5 0 1 2 3 4 7 8 9 10 11 6 %e A383570 6 7 8 9 10 11 0 1 2 3 4 5 %e A383570 7 8 9 10 11 6 5 0 1 2 3 4 %e A383570 8 9 10 11 6 7 4 5 0 1 2 3 %e A383570 9 10 11 6 7 8 3 4 5 0 1 2 %e A383570 10 11 6 7 8 9 2 3 4 5 0 1 %e A383570 11 6 7 8 9 10 1 2 3 4 5 0 %e A383570 has 76032 transversals. %Y A383570 Cf. A002860, A091323, A090741, A338522, A383368. %K A383570 nonn,more,hard %O A383570 1,1 %A A383570 _Eduard I. Vatutin_, Apr 30 2025