cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383570 Number of transversals in pine Latin squares of order 4n.

This page as a plain text file.
%I A383570 #20 Jul 20 2025 08:53:30
%S A383570 8,384,76032,62881792
%N A383570 Number of transversals in pine Latin squares of order 4n.
%C A383570 A pine Latin square is a not necessarily canonical composite Latin square of order N=2*K formed from specially arranged cyclic Latin squares of order K.
%C A383570 By construction, pine Latin square is determined one-to-one by the cyclic square used, so number of pine Latin squares of order N is equal to number of cyclic Latin squares of order N/2.
%C A383570 All pine Latin squares are horizontally symmetric column-inverse Latin squares.
%C A383570 All pine Latin squares for selected order N are isomorphic one to another as Latin squares, so they have same properties (number of transversals, intercalates, etc.).
%C A383570 Pine Latin squares have interesting properties, for example, maximum known number of intercalates (see A383368 and A092237) for some orders N (at least N in {2, 4, 6, 10, 18}).
%C A383570 Pine Latin squares do not exist for odd orders because they must be horizontally symmetric.
%C A383570 Hypothesis: number of transversals in pine Latin squares of all orders N=4k+2 is zero (verified for orders N<=18).
%H A383570 Richard Bean, <a href="https://www.researchgate.net/publication/2416446_Critical_Sets_in_Latin_Squares_and_Associated_Structures">Critical sets in Latin squares and associated structures</a>, Ph.D. Thesis, The University of Queensland, 2001.
%H A383570 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2995">About the properties of pine Latin squares</a> (in Russian).
%H A383570 Eduard I. Vatutin, <a href="/A383570/a383570.txt">Proving list (examples)</a>.
%H A383570 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A383570 For order N=8 pine Latin square
%e A383570   0 1 2 3 4 5 6 7
%e A383570   1 2 3 0 7 4 5 6
%e A383570   2 3 0 1 6 7 4 5
%e A383570   3 0 1 2 5 6 7 4
%e A383570   4 5 6 7 0 1 2 3
%e A383570   5 6 7 4 3 0 1 2
%e A383570   6 7 4 5 2 3 0 1
%e A383570   7 4 5 6 1 2 3 0
%e A383570 has 384 transversals.
%e A383570 .
%e A383570 For order N=10 pine Latin square
%e A383570   0 1 2 3 4 5 6 7 8 9
%e A383570   1 2 3 4 0 9 5 6 7 8
%e A383570   2 3 4 0 1 8 9 5 6 7
%e A383570   3 4 0 1 2 7 8 9 5 6
%e A383570   4 0 1 2 3 6 7 8 9 5
%e A383570   5 6 7 8 9 0 1 2 3 4
%e A383570   6 7 8 9 5 4 0 1 2 3
%e A383570   7 8 9 5 6 3 4 0 1 2
%e A383570   8 9 5 6 7 2 3 4 0 1
%e A383570   9 5 6 7 8 1 2 3 4 0
%e A383570 has no transversals.
%e A383570 .
%e A383570 For order N=12 pine Latin square
%e A383570   0 1 2 3 4 5 6 7 8 9 10 11
%e A383570   1 2 3 4 5 0 11 6 7 8 9 10
%e A383570   2 3 4 5 0 1 10 11 6 7 8 9
%e A383570   3 4 5 0 1 2 9 10 11 6 7 8
%e A383570   4 5 0 1 2 3 8 9 10 11 6 7
%e A383570   5 0 1 2 3 4 7 8 9 10 11 6
%e A383570   6 7 8 9 10 11 0 1 2 3 4 5
%e A383570   7 8 9 10 11 6 5 0 1 2 3 4
%e A383570   8 9 10 11 6 7 4 5 0 1 2 3
%e A383570   9 10 11 6 7 8 3 4 5 0 1 2
%e A383570   10 11 6 7 8 9 2 3 4 5 0 1
%e A383570   11 6 7 8 9 10 1 2 3 4 5 0
%e A383570 has 76032 transversals.
%Y A383570 Cf. A002860, A091323, A090741, A338522, A383368.
%K A383570 nonn,more,hard
%O A383570 1,1
%A A383570 _Eduard I. Vatutin_, Apr 30 2025