This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383578 #29 May 15 2025 08:24:13 %S A383578 2,3,25,7,11,169,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83, %T A383578 89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173, %U A383578 179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293 %N A383578 Let p = prime(n), then a(n) is the p-smooth part of (p-1)!+1. %C A383578 If x is an integer > 1 and p is a prime divisor of x, then a tower of x subordinate to p is an integer t such that there exists a prime divisor q of x such that q <= p, and t is the highest power of q that is a divisor of x. %C A383578 If (p-1)!+1 = Product_{k} q_k^(e_k), then a(n) = Product_{k<=n} q_k^(e_k). - _Sean A. Irvine_, May 05 2025 %C A383578 Let p = prime(n). If m<p, then (p-1)!+1 == 1 mod m, so a(n) = p-adic valuation of (p-1)!+1. By Wilson's theorem, a(n)>=p. Conjecture: a(n) = p^2 if n = 3, 6 or 103 and a(n) = p otherwise. - _Chai Wah Wu_, May 11 2025 %F A383578 a(n) = ((prime(n) - 1)! + 1) / A383257(n). %e A383578 a(6) = 169 because the prime factorization of ((13 - 1)! + 1) is 13^2*2834329, and 13^2 = 169. %o A383578 (PARI) a(n) = my(p=prime(n), x=(p-1)! + 1, f=factor((p-1)! + 1, nextprime(p+1))); for (i=1, #f~, if (f[i, 1] <= p, f[1, 1] = 1)); x/factorback(f); \\ _Michel Marcus_, Apr 30 2025 %o A383578 (Python) %o A383578 from sympy import prime, factorial %o A383578 def A383578(n): %o A383578 p, c = prime(n), 1 %o A383578 f = factorial(p-1)+1 %o A383578 a, b = divmod(f,p) %o A383578 while not b: %o A383578 c *= p %o A383578 f = a %o A383578 a, b = divmod(f,p) %o A383578 return c # _Chai Wah Wu_, May 12 2025 %Y A383578 Cf. A007540, A060371, A383257. %K A383578 nonn %O A383578 1,1 %A A383578 _Mike Jones_, Apr 30 2025 %E A383578 More terms from _Michel Marcus_, Apr 30 2025