cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383609 Triangle read by rows: T(n,k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) for 0 < k < n, T(n,0) = T(n,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 8, 1, 1, 5, 13, 20, 17, 1, 1, 6, 19, 38, 50, 38, 1, 1, 7, 26, 63, 107, 126, 89, 1, 1, 8, 34, 96, 196, 296, 322, 216, 1, 1, 9, 43, 138, 326, 588, 814, 834, 539, 1, 1, 10, 53, 190, 507, 1052, 1728, 2236, 2187, 1374, 1
Offset: 0

Views

Author

Mélika Tebni, May 02 2025

Keywords

Examples

			Triangle T(n, k) starts:
n\k :     0       1       2        3        4       5       6       7
 ====================================================================
  0 :     1
  1 :     1       1
  2 :     1       2       1
  3 :     1       3       4        1
  4 :     1       4       8        8        1
  5 :     1       5      13       20       17       1
  6 :     1       6      19       38       50      38       1
  7 :     1       7      26       63      107     126      89      1
  ...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) option remember; if k = n or k = 0 then 1 elif k < 0 then 0 else T(n-1, k-2)+T(n-1, k-1)+T(n-1, k) end if end proc:
    seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 8);

Formula

Sum_{k=0..n} 2^(n-k)*(T(n, k)(mod 2)) = A038185(n).
Sum_{j=0..n}(Sum_{k=0..j} T(j, k)) = A211278(n).
T(n,k) = A167630(n,n-k).