cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383610 Expansion of 1/( (1-x^2) * (1-x^2-9*x)^2 )^(1/3).

This page as a plain text file.
%I A383610 #9 May 03 2025 03:07:43
%S A383610 1,6,46,372,3106,26406,227179,1970952,17206552,150940848,1329193288,
%T A383610 11741662152,103992267826,923052335316,8208568670644,73116321077784,
%U A383610 652195543067596,5824848557238228,52080340709333998,466116121318516872,4175438344430632696
%N A383610 Expansion of 1/( (1-x^2) * (1-x^2-9*x)^2 )^(1/3).
%F A383610 a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-2/3,n-2*k) * binomial(n-k,k).
%F A383610 a(n) ~ Gamma(1/3) * (9 + sqrt(85))^(n+1) / (Pi * 3^(1/6) * 85^(1/3) * n^(1/3) * 2^(n+2)). - _Vaclav Kotesovec_, May 03 2025
%o A383610 (PARI) a(n) = sum(k=0, n\2, (-9)^(n-2*k)*binomial(-2/3, n-2*k)*binomial(n-k, k));
%Y A383610 Cf. A383601, A383611.
%Y A383610 Cf. A383598.
%K A383610 nonn
%O A383610 0,2
%A A383610 _Seiichi Manyama_, May 02 2025