This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383612 #26 May 12 2025 19:54:37 %S A383612 3,5,7,11,13,14,15,17,19,23,29,30,31,37,38,39,41,42,43,44,45,47,53,54, %T A383612 55,59,60,61,62,63,67,71,73,74,75,79,83,84,85,89,90,91,97,98,99,101, %U A383612 102,103,104,105,107,108,109,110,111,113,114,115,127,131,137,138,139,140,141,149,150 %N A383612 Numbers k such that 2 + val(k!, 2) < p + val(k!, p), where p is the largest prime <= k and val(r, m) is the valuation of r at m. %C A383612 All odd primes are contained within this sequence. %e A383612 For 3, p = 3 since 3 is the largest prime <= 3, and since val(3!, 2) = 1 and val(3!, 3) = 1, 2 + 1 = 3 < 4 = 3 + 1. So, 3 is in the sequence. %e A383612 For 5, p = 5 since 5 is the largest prime <= 5, and since val(5!, 2) = 3 and val(5!, 5) = 1, 2 + 3 = 5 < 6 = 5 + 1. So, 5 is in the sequence. %e A383612 For 14, p = 13 since 13 is the largest prime <= 14, and since val(14!, 2) = 11 and val(14!, 13) = 1, 2 + 11 = 13 < 14 = 13 + 1. So, 14 is in the sequence. %o A383612 (PARI) isok(k) = if (k>1, my(p=precprime(k), fk=k!); 2 + valuation(fk, 2) < p + valuation(fk, p)); \\ _Michel Marcus_, May 02 2025 %o A383612 (Python) %o A383612 from sympy import primerange, prevprime %o A383612 def valuation(n, p): %o A383612 count = 0 %o A383612 i = p %o A383612 while n // i >= 1: %o A383612 count += n // i %o A383612 i *= p %o A383612 return count %o A383612 def create_list(): %o A383612 result_list = [] %o A383612 for n in range(2, 151): %o A383612 for p in primerange(3, n + 1): %o A383612 if 2 + valuation(n, 2) < p + valuation(n, p): %o A383612 result_list.append(n) %o A383612 break %o A383612 return result_list %o A383612 result = create_list() %o A383612 print(result) %Y A383612 Cf. A000142, A007814, A007917. %K A383612 nonn %O A383612 1,1 %A A383612 _Ryan Jean_, May 02 2025