cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383613 Square array read by antidiagonals upwards: T(n,k) (for n>1 and k>0) is the smallest k-digit prime p such that prevprime(p) appears as a substring in p^n; or -1 if no such prime exists.

This page as a plain text file.
%I A383613 #13 May 09 2025 23:12:48
%S A383613 -1,3,-1,-1,17,-1,3,43,997,3701,3,31,607,2837,-1,3,11,929,5843,57349,
%T A383613 -1,5,11,-1,4447,31063,224813,-1,5,-1,277,2477,77377,292223,9999991,
%U A383613 65442077,7,11,809,7019,24379,262433,9862243,61879669,-1,-1,11,499,1571,17669,342281,1303613,32685743,763137931,-1
%N A383613 Square array read by antidiagonals upwards: T(n,k) (for n>1 and k>0) is the smallest k-digit prime p such that prevprime(p) appears as a substring in p^n; or -1 if no such prime exists.
%e A383613 T(2,4) = 3701, because prevprime(3701) = 3697 is a substring of 3701^2 = 13697401, and no smaller 4-digit prime satisfies this condition.
%e A383613 Top left corner begins at T(2,1):
%e A383613   -1, -1,  -1, 3701,    -1, ...
%e A383613    3, 17, 997, 2837, 57349, ...
%e A383613   -1, 43, 607, 5843, 31063, ...
%e A383613    3, 31, 929, 4447, 77377, ...
%e A383613    .  .., ..., ...., ....., ...
%o A383613 (PARI) T(n,k) = forprime(p=10^(k-1), 10^k-1, if (#strsplit(Str(p^n), Str(precprime(p-1))) >= 2, return(p));); return(-1); \\ _Michel Marcus_, May 02 2025
%Y A383613 Cf. A381969.
%K A383613 sign,tabl,base
%O A383613 2,2
%A A383613 _Jean-Marc Rebert_, May 02 2025