A383614 The unique sequence such that Sum_{d|n} d*a(d)^(n/d) = sigma(n)^2 for every n.
1, 4, 5, 4, 7, -10, 9, -44, -23, -197, 13, -845, 15, -2340, -701, -9164, 19, -31578, 21, -124979, -11355, -381326, 25, -1778580, -3323, -5162265, -212899, -21915630, 31, -70256029, 33, -311369996, -4439583, -1010580635, -129393, -4135827284, 39, -14467258386
Offset: 1
Examples
For n = 1, the equation gives a(1) = sigma(1)^2 = 1; For n = 6, the equation gives 1*1^6 + 2*4^3 + 3*5^2 + 6*a(6) = sigma(6)^2 = 144, so a(6) = -10.
Links
- Art of Problem Solving, 2025 China Team Selection Test, Test 4, Day 1, Problem 1
Programs
-
PARI
lista(nn) = {my(v=vector(nn)); v[1] = 1; for(n=2, nn, s = sigma(n)^2; fordiv(n, d, s -= d*v[d]^(n/d)); v[n]=s/n); v}
Formula
For prime p, a(p) = p + 2.
Comments