cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383615 Length of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A383615 #20 Jul 20 2025 19:27:17
%S A383615 4,40,364,3444,34584,367224,4086940,47268364,564177640,6911470020,
%T A383615 86537568264,1103799334200,14305253278320,187980019758360,
%U A383615 2500329584942460,33615542888998620,456277454520102600,6246438361923425820,86175353763393711960,1197196443738946826760
%N A383615 Length of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.
%H A383615 Miguel-Ángel Pérez García-Ortega, <a href="/A383615/a383615.pdf">El Libro de las Ternas Pitagóricas</a>
%F A383615 a(n) = 2*C(n)*(C(n) - 1) where C(n) = A000108(n).
%e A383615 Triangles begin:
%e A383615   n=2:      3,     4,     5;
%e A383615   n=3:      9,    40,    41.
%e A383615 This sequence is column 2.
%Y A383615 Cf. A000108, A131428 (short leg), A383616 (semiperimeter), A381846 (area).
%K A383615 nonn,easy
%O A383615 2,1
%A A383615 _Miguel-Ángel Pérez García-Ortega_, May 02 2025