This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383617 #14 May 08 2025 03:15:05 %S A383617 1,2,2,10,16,10,104,272,272,104,3044,11456,16960,11456,3044,291968, %T A383617 1432608,2842304,2842304,1432608,291968,96928992,578431232,1441700480, %U A383617 1920352256,1441700480,578431232,96928992,112282908928,784780122880,2351993457920,3918054495616,3918054495616,2351993457920,784780122880,112282908928 %N A383617 Triangle read by rows: T(n,k) is the number of binary relations on a set of n objects, k of which are picked out, 0 <= k <= n. %C A383617 The row sums are the number of simple digraphs with n 4-colored nodes. The colors result from the four cases combining the property self-referencing (yes/no) with "picked out" (yes/no). %H A383617 Peter Dolland, <a href="/A383617/a383617.py.txt">Python calculation of T(n,k)</a> %F A383617 T(n,k) = T(n,n-k). %F A383617 T(n,0) = T(n,n) = A000595(n). %F A383617 Sum_{k=0..n} T(n,k) = A353996(n+1) = A329874(n,4). %e A383617 Triangle starts: %e A383617 1; %e A383617 2, 2; %e A383617 10, 16, 10; %e A383617 104, 272, 272, 104; %e A383617 3044, 11456, 16960, 11456, 3044; %e A383617 291968, 1432608, 2842304, 2842304, 1432608, 291968; %e A383617 96928992, 578431232, 1441700480, 1920352256, 1441700480, ... %e A383617 112282908928, 784780122880, 2351993457920, 3918054495616, 3918054495616, ... %e A383617 ... %e A383617 Example n=2, k=1: The both objects are differentiated. As a consequence all binary relations on two different objects have to be counted: These are the subsets of the cross product of the objects set with itself. This contains four pairs, so the number of subsets is 2^4 = 16. %Y A383617 Cf. A000595 (edge cases), A353996 (row sums), A329874 (4th column = row sums). %K A383617 nonn,tabl %O A383617 0,2 %A A383617 _Peter Dolland_, May 02 2025