This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383619 #21 May 14 2025 17:49:32 %S A383619 1,8,20,36,40,54,64,84,104,116,135,144,196,224,228,232,243,264,270,280 %N A383619 Conjectured list of least elements of nontrivial arithmetic derivative orbits. %C A383619 a(n) is the least integer in the n-th nontrivial equivalence class under iteration of the Lagarias arithmetic derivative D. Two numbers m and n lie in the same class if repeated application of D to each, eventually produces the same value; every such class has a unique smallest member, and this sequence lists those members in ascending order. %C A383619 Note that k is a fixed point of the arithmetic derivative D (i.e., D(k)=k) if and only if k=p^p for some prime p. Such one-element classes {p^p} are considered trivial and are excluded from the list of nontrivial attractors. %C A383619 The values of a(n) are conjectural, contingent on the absence of further merges or the existence of nontrivial cycles beyond the computational horizon; this is analogous to Collatz dynamics. %F A383619 Let {C_n} be the family of nontrivial equivalence classes under iteration of the arithmetic derivative operator. Then, a(n) := min(C_n). %e A383619 a(2) := min(C_2) = 8. %o A383619 (SageMath) %o A383619 D = lambda n: 0 if n<2 else sum(e*(n//p) for p,e in Integer(n).factor()) %o A383619 def A(N, k=None): %o A383619 c, o = {1:1}, [1] %o A383619 for i in range(2, N+1): %o A383619 if i in c: continue %o A383619 P, m = [], i %o A383619 while 1 <= m <= N and m not in c and m not in P: %o A383619 P.append(m) %o A383619 m = D(m) %o A383619 if m in c: v = c[m] %o A383619 elif m in P: v = min(P[P.index(m):]) %o A383619 else: v = min(P) %o A383619 for x in P: c[x] = v %o A383619 if c[i] == i and len(P) > 1: %o A383619 o.append(i) %o A383619 if k and len(o) >= k: break %o A383619 return o %o A383619 A(10**18, k=20) %Y A383619 Cf. A003415, A068346, A099306, A258644, A258645, A258646, A258647, A258648, A258649, A258650. %K A383619 nonn,more %O A383619 1,2 %A A383619 _Dimitris Cardaris_, May 02 2025