This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383633 #12 Aug 18 2025 05:38:28 %S A383633 1,56,3741,277256,22052713,1846878936,160878051401,14454374710216, %T A383633 1331486959280259,125190717874655720,11973642784650273211, %U A383633 1161838196321182959096,114133506709827074843495,11331528323810252967417064,1135444330405820622163425351,114694796036872449398436891896 %N A383633 Expansion of 1/( Product_{k=0..10} (1 - (11*k+1) * x) )^(1/11). %C A383633 In general, if m > 0 and g.f. = 1/(Product_{k=0..m-1} (1 - (m*k+1)*x))^(1/m), then a(n) ~ (m*(m-1) + 1)^(n + 1 - 1/m) / (Gamma(1/m) * Gamma(m+1)^(1/m) * m^(1 - 2/m) * n^(1 - 1/m)). - _Vaclav Kotesovec_, Aug 18 2025 %F A383633 a(n) ~ 3^(n + 6/11) * 37^(n + 10/11) / (Gamma(1/11) * 2^(8/11) * 5^(2/11) * 7^(1/11) * 11^(10/11) * n^(10/11)). - _Vaclav Kotesovec_, May 12 2025 %o A383633 (PARI) my(N=20, x='x+O('x^N)); Vec(1/prod(k=0, 10, 1-(11*k+1)*x)^(1/11)) %Y A383633 Cf. A383627, A383628, A383629, A383630, A383631, A383632. %K A383633 nonn %O A383633 0,2 %A A383633 _Seiichi Manyama_, May 03 2025