This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383635 #21 May 04 2025 14:44:19 %S A383635 1,55,1940,56210,1461495,35567301,829147810,18774611680,416583297845, %T A383635 9111004217315,197197849460976,4235712944853390,90470493402792595, %U A383635 1924292232588575905,40801645704191871710,863108809168841357276,18225784176922532902545 %N A383635 Expansion of 1/( Product_{k=0..4} (1 - (5*k+1) * x) ). %H A383635 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (55,-1085,9185,-30330,22176). %F A383635 a(n) = Sum_{k=0..n} 5^k * binomial(n+4,k+4) * Stirling2(k+4,4). %F A383635 a(n) = (21^(n+4) - 4*16^(n+4) + 6*11^(n+4) - 4*6^(n+4) + 1)/15000. %F A383635 a(n) = 55*a(n-1) - 1085*a(n-2) + 9185*a(n-3) - 30330*a(n-4) + 22176*a(n-5). %F A383635 G.f.: B(x)^5, where B(x) is the g.f. of A383629. %F A383635 a(n) = Sum_{k=0..n} (-5)^k * 21^(n-k) * binomial(n+4,k+4) * Stirling2(k+4,4). %o A383635 (PARI) a(n) = (21^(n+4)-4*16^(n+4)+6*11^(n+4)-4*6^(n+4)+1)/15000; %Y A383635 Cf. A383629. %K A383635 nonn,easy %O A383635 0,2 %A A383635 _Seiichi Manyama_, May 03 2025