A383657 Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).
1, 3, 3, 15, 3, 9, 3, 35, 15, 9, 3, 45, 3, 9, 9, 315, 3, 45, 3, 45, 9, 9, 3, 105, 15, 9, 35, 45, 3, 27, 3, 693, 9, 9, 9, 225, 3, 9, 9, 105, 3, 27, 3, 45, 45, 9, 3, 945, 15, 45, 9, 45, 3, 105, 9, 105, 9, 9, 3, 135, 3, 9, 45, 3003, 9, 27, 3, 45, 9, 27, 3, 525, 3
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x];dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Numerator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,73] (* Shenghui Yang, May 04 2025 *)
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))
Comments