cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383658 Denominator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).

This page as a plain text file.
%I A383658 #17 May 07 2025 11:32:53
%S A383658 1,2,2,8,2,4,2,16,8,4,2,16,2,4,4,128,2,16,2,16,4,4,2,32,8,4,16,16,2,8,
%T A383658 2,256,4,4,4,64,2,4,4,32,2,8,2,16,16,4,2,256,8,16,4,16,2,32,4,32,4,4,
%U A383658 2,32,2,4,16,1024,4,8,2,16,4,8,2,128,2,4,16,16,4
%N A383658 Denominator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).
%C A383658 Is this a duplicate of A046644 (the first 8192 entries are the same)? - _R. J. Mathar_, May 06 2025
%H A383658 Vaclav Kotesovec, <a href="/A383658/b383658.txt">Table of n, a(n) for n = 1..10000</a>
%F A383658 Sum_{k=1..n} A383657(k)/A383658(k) ~ 2*n*sqrt(log(n)/Pi) * (1 - (1 - 3*gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.
%t A383658 coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x]; dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Denominator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,77] (* _Shenghui Yang_, May 04 2025 *)
%o A383658 (PARI) for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))
%Y A383658 Cf. A383657.
%Y A383658 Cf. A046643, A046644, A256688, A256689, A256690, A256691, A256692, A256693.
%Y A383658 Cf. A000005, A007425, A007426, A061200, A034695.
%K A383658 nonn,frac,mult
%O A383658 1,2
%A A383658 _Vaclav Kotesovec_, May 04 2025