This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383663 #16 Jun 23 2025 14:41:19 %S A383663 2,11,58,0,21,1020,9309,1481,34162,1295034,1067638,2213327,50139185, %T A383663 682189688,144994543,2607067351,53099426601,34524432316,57716933870, %U A383663 1388556345255,16330667126220,3697750041989,70341043737487,1662805965511580,1250063279938854,2122662114673944 %N A383663 Number of closed knight's tours in the first 2n cells of a 7 X ceiling(2n/7) board. %C A383663 If n is not a multiple of 7, the rightmost column has only 2n mod 7 rows (see example). %D A383663 Donald E. Knuth, Hamiltonian paths and cycles. Prefascicle 8a of The Art of Computer Programming (work in progress, 2025). %H A383663 Don Knuth, <a href="/A383663/b383663.txt">Table of n, a(n) for n = 11..147</a> %H A383663 Don Knuth, <a href="https://cs.stanford.edu/~knuth/programs/dynaham.w">CWEB program</a> with input parameter board,42,7,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase]. %F A383663 a(7n) = A193054(n). %e A383663 For n=11, the first of a(11)=2 solutions is %e A383663 1 4 21 6 %e A383663 20 7 2 %e A383663 3 22 5 %e A383663 8 19 10 %e A383663 11 16 13 %e A383663 14 9 18 %e A383663 17 12 15 %e A383663 and the other is obtained by reflecting the bottom four rows: %e A383663 1 4 21 6 %e A383663 20 7 2 %e A383663 3 22 5 %e A383663 10 19 8 %e A383663 13 16 11 %e A383663 18 9 14 %e A383663 15 12 17 . %Y A383663 Cf. A193054, A383660, A383661, A383662, A383664. %K A383663 nonn %O A383663 11,1 %A A383663 _Don Knuth_, May 04 2025