This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383664 #14 May 05 2025 15:18:53 %S A383664 4,12,212,0,50,4525,101730,44202,66034,2408624,69362264,55488142, %T A383664 101343548,2398536889,43391615822,34524432316,52661182514, %U A383664 1231713564493,20780788492646,13267364410532,21515340977481,552407941427835,10211663162678661,7112881119092574,11873618786859165 %N A383664 Number of closed knight's tours in the first 2n cells of an 8 X ceiling(2n/8) board. %C A383664 If n is not a multiple of 4, the rightmost column has only 2n mod 8 rows (see example). %D A383664 Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025). %H A383664 Don Knuth, <a href="/A383664/b383664.txt">Table of n, a(n) for n = 13..96</a> %H A383664 Don Knuth, <a href="https://cs.stanford.edu/~knuth/programs/dynaham.w">CWEB program</a> with input parameter board,32,8,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase]. %F A383664 a(4n) = A193055(n). %e A383664 For n=13 the a(13)=4 solutions are %e A383664 1 4 25 12 %e A383664 24 11 2 5 %e A383664 3 26 13 %e A383664 10 23 6 %e A383664 7 14 9 %e A383664 22 17 20 %e A383664 19 8 15 %e A383664 16 21 18 ; %e A383664 1 4 25 12 %e A383664 24 11 2 5 %e A383664 3 26 13 %e A383664 10 23 6 %e A383664 7 14 9 %e A383664 20 15 22 %e A383664 15 8 19 %e A383664 18 21 16 ; %e A383664 1 14 25 22 %e A383664 24 21 2 15 %e A383664 13 26 23 %e A383664 20 3 16 %e A383664 17 12 19 %e A383664 4 9 6 %e A383664 7 18 11 %e A383664 10 5 8 ; %e A383664 1 14 25 22 %e A383664 24 21 2 15 %e A383664 13 26 23 %e A383664 20 3 16 %e A383664 17 12 19 %e A383664 6 9 4 %e A383664 11 18 7 %e A383664 8 5 10 . %Y A383664 Cf. A193055, A383660, A383661, A383662, A383663. %K A383664 nonn %O A383664 13,1 %A A383664 _Don Knuth_, May 04 2025