This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383666 #34 May 21 2025 12:40:18 %S A383666 3,7,9,10,12,15,17,18,19,20,21,22,24,25,26,28,31,33,34,35,36,37,38,39, %T A383666 40,41,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,60,63,65,66,67,68, %U A383666 69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86 %N A383666 Numbers in whose binary representation no bit (0 or 1) occurs exactly once. %C A383666 Also numbers that are not a power of 2 and are not (2^k + 1) away from the next larger power of 2 for some k. - _David A. Corneth_, May 17 2025 %H A383666 David A. Corneth, <a href="/A383666/b383666.txt">Table of n, a(n) for n = 1..10000</a> %e A383666 From _David A. Corneth_, May 17 2025: (Start) %e A383666 3 = 11_2 is in the sequence as both the digits 0 and the digits 1 do not occur exactly once in the binary expansion. Also 3 is no power of 2 and one less than a power of 2. %e A383666 6 = 101_2 is not in the sequence as the digit 0 occurs exactly once in the binary expansion. Also it can be written as 2^3 - 2^0 - 1. (End) %p A383666 filter:= proc(n) local L,n1,n0; %p A383666 L:= convert(n,base,2); %p A383666 n1:= convert(L,`+`); %p A383666 n0:= nops(L)-n1; %p A383666 n1 >= 2 and n0 <> 1 %p A383666 end proc; %p A383666 select(filter, [$1..1000]); # _Robert Israel_, May 13 2025 %t A383666 s = Select[Range[200], DigitCount[#, 2, 0] != 1 && DigitCount[#, 2, 1] != 1 &] %t A383666 Map[First, RealDigits[s, 2]] %o A383666 (PARI) isok(k) = my(b=binary(k)); (#select(x->(x==1), b) != 1) && (#select(x->(x==0), b) != 1); \\ _Michel Marcus_, May 13 2025 %o A383666 (PARI) is(n) = { %o A383666 my(v = valuation(n, 2)); %o A383666 if(n >> v == 1, return(0)); %o A383666 if(1<<valuation(n+1,2) == n+1, return(1)); %o A383666 c = 1 << (logint(n, 2) + 1) - n - 1; %o A383666 if(c >> valuation(c, 2) == 1, return(0)); %o A383666 1 %o A383666 } \\ _David A. Corneth_, May 17 2025 %o A383666 (PARI) upto(n) = { %o A383666 my(res = [1..n], del = List()); %o A383666 for(i = 0, logint(n, 2)+1, %o A383666 pow2 = 1<<i; %o A383666 listput(del, pow2); %o A383666 for(j = 0, i-2, %o A383666 listput(del, pow2 - 1<<j - 1); %o A383666 ); %o A383666 ); %o A383666 setminus(res, Set(del)); %o A383666 } \\ _David A. Corneth_, May 17 2025 %o A383666 (Python) %o A383666 def A383666(n): %o A383666 def f(x): %o A383666 if x<=1: return n+x %o A383666 l, s = x.bit_length(), bin(x)[2:] %o A383666 if (m:=s.count('0'))>0: return n+s.index('0')-(m>1)+(l*(l-1)>>1) %o A383666 return n-1+(l*(l+1)>>1) %o A383666 m, k = n, f(n) %o A383666 while m != k: m, k = k, f(k) %o A383666 return m # _Chai Wah Wu_, May 21 2025 %Y A383666 Cf. A030130, A158581, A383667. %K A383666 nonn,base,easy %O A383666 1,1 %A A383666 _Clark Kimberling_, May 07 2025