This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383670 #26 Sep 04 2025 08:40:51 %S A383670 0,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1, %T A383670 2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1, %U A383670 2,1,2,0,1,2,1,2,0,1,2,0,1,2,1,2,0,1 %N A383670 Limiting word, as a sequence, obtained by prefixing with 0 the limiting sequence of s(n) defined by s(0) = 0, s(1) = 12, s(n) = the concatenation of s(n - 1) and s(n - 2). %C A383670 The length of the n-th initial subword is A000045(n), for n>=1. %e A383670 s(0) = 1, s(1) = 12, s(2) = 120, s(3) = 12012, etc., so that the limiting word with 0 prefixed is 0120120120... %t A383670 s[0] = "0"; s[1] = "12"; s[n_] := StringJoin[s[n - 1], s[n - 2]]; %t A383670 Join[{0}, IntegerDigits[FromDigits[s[10]]]] %o A383670 (Python) %o A383670 from math import isqrt %o A383670 def A276885(n): return n+(n-1+isqrt(5*(n-1)**2)&-2) %o A383670 def A001950(n): return (n+isqrt(5*n**2)>>1)+n %o A383670 def A383670(n): %o A383670 def bsearch(f, n): %o A383670 kmin, kmax = 0, 1 %o A383670 while f(kmax) <= n: %o A383670 kmax <<= 1 %o A383670 kmin = kmax>>1 %o A383670 while True: %o A383670 kmid = kmax+kmin>>1 %o A383670 if f(kmid) > n: %o A383670 kmax = kmid %o A383670 else: %o A383670 kmin = kmid %o A383670 if kmax-kmin <= 1: %o A383670 break %o A383670 return kmin %o A383670 for i, f in enumerate((A276885, A001950)): %o A383670 if f(bsearch(f, n))==n: return i %o A383670 return 2 # _Chai Wah Wu_, May 21 2025 %Y A383670 Cf. A000045, A003849, A276885 (positions of 0), A001950 (positions of 1), A026352 (positions of 2), A383671. %K A383670 nonn,changed %O A383670 1,3 %A A383670 _Clark Kimberling_, May 15 2025