A383694 Primitive exponential unitary abundant numbers: the powerful terms of A383693.
900, 1764, 4356, 4500, 4900, 6084, 10404, 12348, 12996, 19044, 22500, 30276, 34596, 44100, 47916, 49284, 60516, 66564, 79092, 79524, 86436, 88200, 101124, 108900, 112500, 125316, 132300, 133956, 152100, 161604, 176400, 176868, 181476, 191844, 213444, 217800, 220500
Offset: 1
Keywords
Examples
900 is a term since eusigma(900) = 2160 > 2 * 900, and 900 = 2^2 * 3^2 * 5^2 is a powerful number. 6300 is exponential unitary abundant, since eusigma(6300) = 15120 > 2 * 6300, but it is not a powerful number: 6300 = 2^2 * 3^2 * 5^2 * 7. Thus it is not in this sequence. It can be generated as a term of A383693 from a(1) = 900 by 7 * 900 = 6300, since 7 is squarefree and gcd(7, 900) = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fun[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#] == 1 &]; q[n_] := Min[(f = FactorInteger[n])[[;; , 2]]] > 1 && Times @@ fun @@@ f > 2*n; Select[Range[250000], q]
-
PARI
fun(p, e) = sumdiv(e, d, if(gcd(d, e/d) == 1, p^d)); isok(k) = {my(f = factor(k)); ispowerful(f) && prod(i = 1, #f~, fun(f[i, 1], f[i, 2])) > 2*k;}
Comments