This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383703 #15 May 07 2025 11:54:40 %S A383703 0,0,0,1,36,1130,36660,1280419,48644344,2011398164,90267003960, %T A383703 4379275249701,228707424551100,12804721289403966,765571832220427596, %U A383703 48704512002823186119,3286171504510664002992,234445313277315235203624,17637135196532479070107824,1395584859384468591633567945 %N A383703 Coefficient of x^3 in expansion of (x+3) * (x+7) * ... * (x+4*n-1). %H A383703 Vincenzo Librandi, <a href="/A383703/b383703.txt">Table of n, a(n) for n = 0..200</a> %F A383703 a(n) = Sum_{k=3..n} 3^(k-3) * 4^(n-k) * binomial(k,3) * |Stirling1(n,k)|. %F A383703 a(n) = Sum_{k=3..n} (4*n-1)^(k-3) * 4^(n-k) * binomial(k,3) * Stirling1(n,k). %F A383703 E.g.f.: f(x)^3 * log(f(x))^3 / 6, where f(x) = 1/(1 - 4*x)^(1/4). %t A383703 Table[Sum[(4*n-1)^(k-3)*4^(n-k)*Binomial[k,3]*StirlingS1[n,k],{k,3,n}],{n,0,25}] (* _Vincenzo Librandi_, May 07 2025 *) %o A383703 (PARI) a(n) = polcoef(prod(k=0, n-1, x+4*k+3), 3); %o A383703 (Magma) [&+[(4*n-1)^(k-3) * 4^(n-k) * Binomial(k,3) * StirlingFirst(n,k): k in [0..n]]: n in [0..25]]; // _Vincenzo Librandi_, May 07 2025 %Y A383703 Column k=3 of A225471. %K A383703 nonn %O A383703 0,5 %A A383703 _Seiichi Manyama_, May 06 2025