A383705 Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(2/3).
1, 2, 2, 5, 2, 4, 2, 40, 5, 4, 2, 10, 2, 4, 4, 110, 2, 10, 2, 10, 4, 4, 2, 80, 5, 4, 40, 10, 2, 8, 2, 308, 4, 4, 4, 25, 2, 4, 4, 80, 2, 8, 2, 10, 10, 4, 2, 220, 5, 10, 4, 10, 2, 80, 4, 80, 4, 4, 2, 20, 2, 4, 10, 2618, 4, 8, 2, 10, 4, 8, 2, 200, 2, 4, 10, 10, 4
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
coeff=CoefficientList[Series[1/(1-x)^(2/3),{x,0,20}]//Normal,x];dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Numerator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,77] (* Shenghui Yang, May 06 2025 *)
-
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(2/3))[n]), ", "))