A383706 Number of ways to choose disjoint strict integer partitions, one of each prime index of n.
1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 3, 0, 4, 1, 1, 0, 5, 0, 6, 0, 2, 2, 8, 0, 2, 2, 0, 0, 10, 1, 12, 0, 2, 3, 2, 0, 15, 3, 2, 0, 18, 1, 22, 0, 0, 5, 27, 0, 2, 0, 3, 0, 32, 0, 3, 0, 4, 5, 38, 0, 46, 7, 0, 0, 4, 1, 54, 0, 5, 1, 64, 0, 76, 8, 0, 0, 3, 1, 89, 0, 0, 10
Offset: 1
Keywords
Examples
The prime indices of 25 are (3,3), for which we have choices ((3),(2,1)) and ((2,1),(3)), so a(25) = 2. The prime indices of 91 are (4,6), for which we have choices ((4),(6)), ((4),(5,1)), ((4),(3,2,1)), ((3,1),(6)), ((3,1),(4,2)), so a(91) = 5. The prime indices of 273 are (2,4,6), for which we have choices ((2),(4),(6)), ((2),(4),(5,1)), ((2),(3,1),(6)), so a(273) = 3.
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&]; prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[pof[prix[n]]],{n,100}]
Comments