This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383707 #19 Jun 10 2025 23:15:46 %S A383707 1,2,3,6,10,14,15,30,42,66,70,78,105,110,182,210,330,390 %N A383707 Heinz numbers of maximally refined strict integer partitions. %C A383707 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A383707 Also squarefree numbers such that every strict partition of a prime index contains a prime index. %C A383707 Also squarefree numbers such that no prime index is a sum of distinct non prime indices. %e A383707 The terms together with their prime indices begin: %e A383707 1: {} %e A383707 2: {1} %e A383707 3: {2} %e A383707 6: {1,2} %e A383707 10: {1,3} %e A383707 14: {1,4} %e A383707 15: {2,3} %e A383707 30: {1,2,3} %e A383707 42: {1,2,4} %e A383707 66: {1,2,5} %e A383707 70: {1,3,4} %e A383707 78: {1,2,6} %e A383707 105: {2,3,4} %e A383707 110: {1,3,5} %e A383707 182: {1,4,6} %e A383707 210: {1,2,3,4} %e A383707 330: {1,2,3,5} %e A383707 390: {1,2,3,6} %t A383707 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A383707 nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]]; %t A383707 Select[Range[30],SquareFreeQ[#]&&With[{y=prix[#]},Intersection[y,Total/@nonsets[y]]=={}]&] %Y A383707 Partitions of this type are counted by A179009. %Y A383707 Appears to be positions of 1 in A383706. %Y A383707 For distinct prime indices see A384320. %Y A383707 The proper version appears to be A384390. %Y A383707 The conjugate version is A384723. %Y A383707 A055396 gives least prime index, greatest A061395. %Y A383707 A056239 adds up prime indices, row sums of A112798. %Y A383707 Cf. A048767, A130091, A299200, A351294, A381432, A351295, A357982, A381454, A382525, A384321, A384349, A384389. %K A383707 nonn,more %O A383707 1,2 %A A383707 _Gus Wiseman_, May 15 2025