This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383710 #7 May 08 2025 22:57:09 %S A383710 0,0,1,1,3,4,6,10,15,22,29,42,59,79,108,140,190,247,324,417,541 %N A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part. %C A383710 Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition. %e A383710 For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6). %e A383710 The a(2) = 1 through a(8) = 15 partitions: %e A383710 (11) (111) (22) (221) (222) (322) (332) %e A383710 (211) (311) (411) (331) (422) %e A383710 (1111) (2111) (2211) (511) (611) %e A383710 (11111) (3111) (2221) (2222) %e A383710 (21111) (3211) (3221) %e A383710 (111111) (4111) (3311) %e A383710 (22111) (4211) %e A383710 (31111) (5111) %e A383710 (211111) (22211) %e A383710 (1111111) (32111) %e A383710 (41111) %e A383710 (221111) %e A383710 (311111) %e A383710 (2111111) %e A383710 (11111111) %t A383710 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&]; %t A383710 Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}] %Y A383710 These partitions have Heinz numbers A382912. %Y A383710 The number of such families for each Heinz number is A383706. %Y A383710 The complement is counted by A383708, ranks A382913. %Y A383710 Without ones we have A383711, complement A383533. %Y A383710 A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605). %Y A383710 A098859 counts partitions with distinct multiplicities, compositions A242882. %Y A383710 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A383710 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A383710 Cf. A044813, A047966, A089259, A116540, A130091, A317141, A318361, A381454, A383013. %K A383710 nonn,more %O A383710 0,5 %A A383710 _Gus Wiseman_, May 07 2025