This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383713 #10 May 07 2025 11:18:39 %S A383713 1,0,1,0,0,1,0,0,1,1,0,0,0,2,1,0,0,0,1,3,1,0,0,0,1,3,4,1,0,0,0,0,4,6, %T A383713 5,1,0,0,0,0,2,10,10,6,1,0,0,0,0,1,9,20,15,7,1,0,0,0,0,1,7,25,35,21,8, %U A383713 1,0,0,0,0,0,7,26,55,56,28,9,1,0,0,0,0,0,4,29,71,105,84,36,10,1 %N A383713 Triangle read by rows: T(n,k) is the number of compositions of n with k parts all in standard order. %C A383713 A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1. %F A383713 G.f.: 1 + Sum_{i>0} y^i * x^(i*(i+1)/2) / Product_{j=1..i} 1 - y*(x - x^(j+1))/(1 - x). %e A383713 Triangle begins: %e A383713 k=0 1 2 3 4 5 6 7 8 9 10 %e A383713 n=0 [1], %e A383713 n=1 [0, 1], %e A383713 n=2 [0, 0, 1], %e A383713 n=3 [0, 0, 1, 1], %e A383713 n=4 [0, 0, 0, 2, 1], %e A383713 n=5 [0, 0, 0, 1, 3, 1], %e A383713 n=6 [0, 0, 0, 1, 3, 4, 1], %e A383713 n=7 [0, 0, 0, 0, 4, 6, 5, 1], %e A383713 n=8 [0, 0, 0, 0, 2, 10, 10, 6, 1], %e A383713 n=9 [0, 0, 0, 0, 1, 9, 20, 15, 7, 1], %e A383713 n=10 [0, 0, 0, 0, 1, 7, 25, 35, 21, 8, 1], %e A383713 ... %e A383713 Row n = 6 counts: %e A383713 T(6,3) = 1: (1,2,3). %e A383713 T(6,4) = 3: (1,1,2,2), (1,2,1,2), (1,2,2,1). %e A383713 T(6,5) = 4: (1,1,1,1,2), (1,1,1,2,1), (1,1,2,1,1), (1,2,1,1,1). %e A383713 T(6,6) = 1: (1,1,1,1,1,1). %o A383713 (PARI) %o A383713 T_xy(max_row) = {my(N = max_row+1, x='x+O('x^N), h = 1 + sum(i=1,1+(N/2), y^i * x^(i*(i+1)/2)/prod(j=1,i, 1 - y*(x-x^(j+1))/(1-x)))); vector(N, n, Vecrev(polcoeff(h, n-1)))} %o A383713 T_xy(10) %Y A383713 Cf. A000110 (column sums), A047998, A107429, A126347 (triangle transposed with no zeros), A278984, A383253 (row sums). %K A383713 nonn,easy,tabl %O A383713 0,14 %A A383713 _John Tyler Rascoe_, May 06 2025