This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383723 #8 May 11 2025 21:57:03 %S A383723 1,2,3,6,5,4,9,8,7,10,15,12,13,14,11,20,17,18,19,16,21,28,23,26,25,24, %T A383723 27,22,35,30,33,32,31,34,29,36,45,38,43,40,41,42,39,44,37,54,47,52,49, %U A383723 50,51,48,53,46,55,66,57,64,59,62,61,60,63,58,65,56 %N A383723 a(n) = A378762(A376214(n)). %C A383723 This sequence can be regarded as a triangular array read by rows. Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. The length of row n is 4n-3 = A016813(n-1), n > 0. %C A383723 The sequence can also be regarded as a table read by upward antidiagonals. For n > 1 row n joins two consecutive antidiagonals. %C A383723 The sequence is a self-inverse permutation of the positive integers. %C A383723 In particular, the initial {a(1), a(2), ..., a(A000384(n+1))} is self-inverse. %C A383723 The sequence is an intra-block permutation of the positive integers. %C A383723 Generalization of the Cantor numbering method. %H A383723 Boris Putievskiy, <a href="/A383723/b383723.txt">Table of n, a(n) for n = 1..9730</a> %H A383723 Boris Putievskiy, <a href="https://arxiv.org/abs/2310.18466">Integer Sequences: Irregular Arrays and Intra-Block Permutations</a>, arXiv:2310.18466 [math.CO], 2023. %H A383723 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>. %F A383723 T(n,k) for 1 <= k <= 4n - 3: T(n,k) = A000384(n-1) + P(n,k), P(n, k) = m - 1 - k if k < m and k == 1 (mod 2), P(n, k) = k if k < m and k == 0 (mod 2), P(n, k) = 3m - 1 - k if k >= m and k == 1 (mod 2), P(n, k) = k if k >= m and k == 0 (mod 2), where m = 2n - 1. %e A383723 Triangle array begins: %e A383723 k= 1 2 3 4 5 6 7 8 9 %e A383723 n=1: 1; %e A383723 n=2: 2, 3, 6, 5, 4; %e A383723 n=3: 9, 8, 7, 10, 15, 12, 13, 14, 11; %e A383723 (1, 2, 3, ..., 14, 11) = (1, 2, 3, ..., 12, 11) (1, 2, 3, ..., 12, 15). The first permutation on the right-hand side is from Example A378762 and the second from Example A376214. %e A383723 (1, 2, 3, ..., 14, 11) = (1, 2, 3, ..., 14, 11)^(-1). %e A383723 For n > 1, each row of triangle array joins two consecutive upward antidiagonals in the table: %e A383723 1, 3, 4, 10, 11, ... %e A383723 2, 5, 7, 14, 16, ... %e A383723 6, 8, 13, 19, 24, ... %e A383723 9, 12, 18, 25, 31, ... %e A383723 15, 17, 26, 32, 41, ... %e A383723 ... %e A383723 Subtracting (n-1)*(2*n-3) from each term in row n produces a permutation of numbers from 1 to 4*n-3: %e A383723 1; %e A383723 1, 2, 5, 4, 3; %e A383723 3, 2, 1, 4, 9, 6, 7, 8, 5. %t A383723 T[n_,k_]:=(n-1)*(2*n-3)+Module[{m=2*n-1},If[k<m,If[OddQ[k],m-1-k,k],If[OddQ[k],3m-1-k,k]]] %t A383723 Nmax=3; Flatten[Table[T[n,k],{n,1,Nmax},{k,1,4*n-3}]] %Y A383723 Cf. A000027, A000384, A016813 (row lengths), A376214, A378684, A379342, A379343, A380200, A380245, A380815, A380817, A381662, A381663, A381664, A381968, A382499, A382679, A382680. %K A383723 nonn,tabf %O A383723 1,2 %A A383723 _Boris Putievskiy_, May 07 2025