This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383724 #8 May 11 2025 21:49:18 %S A383724 1,5,3,6,2,4,12,8,14,10,15,7,13,9,11,23,17,25,19,27,21,28,16,26,18,24, %T A383724 20,22,38,30,40,32,42,34,44,36,45,29,43,31,41,33,39,35,37,57,47,59,49, %U A383724 61,51,63,53,65,55,66,46,64,48,62,50,60,52,58,54,56 %N A383724 a(n) = A378762(A382680(n)). %C A383724 This sequence can be regarded as a triangular array read by rows. Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. The length of row n is 4n-3 = A016813(n-1), n > 0. %C A383724 The sequence can also be regarded as a table read by upward antidiagonals. For n > 1 row n joins two consecutive antidiagonals. %C A383724 The sequence is a self-inverse permutation of the positive integers. %C A383724 In particular, the initial {a(1), a(2), ..., a(A000384(n+1))} is self-inverse. %C A383724 The sequence is an intra-block permutation of the positive integers. %C A383724 Generalization of the Cantor numbering method. %H A383724 Boris Putievskiy, <a href="/A383724/b383724.txt">Table of n, a(n) for n = 1..9730</a> %H A383724 Boris Putievskiy, <a href="https://arxiv.org/abs/2310.18466">Integer Sequences: Irregular Arrays and Intra-Block Permutations</a>, arXiv:2310.18466 [math.CO], 2023. %H A383724 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>. %F A383724 T(n,k) for 1 <= k <= 4n - 3: T(n,k) = A000384(n-1) + P(n,k), P(n, k) = m + k if k < m and k == 1 (mod 2), P(n, k) = k if k < m and k == 0 (mod 2), P(n, k) = 3m - 1 - k if k >= m and k == 1 (mod 2), P(n, k) = - m + k if k >= m and k == 0 (mod 2), where m = 2n - 1. %e A383724 Triangle array begins: %e A383724 k= 1 2 3 4 5 6 7 8 9 %e A383724 n=1: 1; %e A383724 n=2: 5, 3, 6, 2, 4; %e A383724 n=3: 12, 8, 14, 10, 15, 7, 13, 9, 11; %e A383724 (1, 5, 3, ..., 9, 11) = (1, 2, 3, ..., 12, 11) (1, 5, 3, ..., 9, 15). The first permutation on the right-hand side is from Example A378762 and the second from Example A382680. %e A383724 (1, 5, 3, ..., 9, 11) = (1, 5, 3, ..., 9, 11)^(-1). %e A383724 For n > 1, each row of triangle array joins two consecutive upward antidiagonals in the table: %e A383724 1, 3, 4, 10, 11, ... %e A383724 5, 2, 14, 9, 27, ... %e A383724 6, 8, 13, 19, 24, ... %e A383724 12, 7, 25, 18, 42, ... %e A383724 15, 17, 26, 32, 41, ... %e A383724 ... %e A383724 Subtracting (n-1)*(2*n-3) from each term in row n produces a permutation of numbers from 1 to 4*n-3: %e A383724 1; %e A383724 4, 2, 5, 1, 3; %e A383724 6, 2, 8, 4, 9, 1, 7, 3, 5. %t A383724 T[n_,k_]:=(n-1)*(2*n-3)+Module[{m=2*n-1},If[k<m,If[OddQ[k],m+k,k],If[OddQ[k],3m-1-k,k-m]]] %t A383724 Nmax=3; Flatten[Table[T[n,k],{n,1,Nmax},{k,1,4*n-3}]] %Y A383724 Cf. A000027, A000384, A016813 (row lengths), A376214, A378684, A379342, A379343, A380200, A380245, A380815, A380817, A381662, A381663, A381664, A381968, A382499, A382679, A382680. %K A383724 nonn,tabf %O A383724 1,2 %A A383724 _Boris Putievskiy_, May 07 2025