This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383728 #11 Jun 09 2025 21:01:25 %S A383728 3135,6279,8855,9405,10695,11571,15675,16095,17255,17391,18837,20615, %T A383728 20735,26691,28083,28215,31031,32085,34485,34713,36519,41151,41615, %U A383728 43953,44275,45695,46655,47025,47859,48285,48495,50439,52173,53475,54131,56511,56823,57239,59295,59565 %N A383728 Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k). %H A383728 Robert Israel, <a href="/A383728/b383728.txt">Table of n, a(n) for n = 1..10000</a> %e A383728 32085 is a term because it has 4 distinct prime factors (3, 5, 23 and 31) and the largest one is the sum of the others (3 + 5 + 23 = 31). %p A383728 N:= 10^5: # for terms <= N %p A383728 P:= select(isprime,[2,seq(i,i=3..N/(3*5*7),2)]): %p A383728 V:= NULL: %p A383728 for j from 1 while P[j]^3*(3*P[j]) < N do %p A383728 for k from j+1 while P[j]*P[k]^2*(P[j]+2*P[k]) < N do %p A383728 for l from k+1 while P[j]*P[k]*P[l] * (P[j]+P[k]+P[l]) <= N do %p A383728 p4:= P[j]+P[k]+P[l]; %p A383728 if not isprime(p4) then next fi; %p A383728 for d1 from 1 while P[j]^d1 * P[k] * P[l] * p4 <= N do %p A383728 for d2 from 1 while P[j]^d1 * P[k]^d2 * P[l] * p4 <= N do %p A383728 for d3 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3 * p4 <= N do %p A383728 for d4 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4 <= N do %p A383728 V:= V,P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4 %p A383728 od od od od od od od: %p A383728 sort([V]); # _Robert Israel_, Jun 09 2025 %t A383728 A383728Q[k_] := Length[#] == 4 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]]; %t A383728 Select[Range[10^5], A383728Q] %Y A383728 Row n = 4 of A383726. %Y A383728 Cf. A001221, A365795, A382469, A383725, A383726, A383729. %K A383728 nonn %O A383728 1,1 %A A383728 _Paolo Xausa_, May 08 2025