cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383729 Numbers k such that omega(k) = 5 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).

Original entry on oeis.org

3570, 7140, 8970, 10626, 10710, 14280, 16530, 17850, 17940, 20706, 21252, 21420, 24738, 24882, 24990, 26910, 28560, 31878, 32130, 33060, 35700, 35880, 36890, 38130, 41412, 42504, 42840, 44330, 44850, 49476, 49590, 49764, 49938, 49980, 52170, 53550, 53820, 54834, 55986, 57120
Offset: 1

Views

Author

Paolo Xausa, May 08 2025

Keywords

Examples

			10710 is a term because it has 5 distinct prime factors (2, 3, 5, 7 and 17) and the largest one is the sum of the others (2 + 3 + 5 + 7 = 17).
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/(2*3*5*7),2)]):
    V:= NULL:
    i:= 1:
    for j from i+1 while P[i]*P[j]^3*(P[i]+3*P[j]) < N do
      for k from j+1 while P[i]*P[j]*P[k]^2*(P[i]+P[j]+2*P[k]) < N do
        for l from k+1 while P[i]*P[j]*P[k]*P[l] * (P[i]+P[j]+P[k]+P[l]) <= N do
          p5:= P[i]+P[j]+P[k]+P[l];
          if not isprime(p5) then next fi;
          for d1 from 1 while P[i]^d1 * P[j] * P[k] * P[l] * p5 <= N do
           for d2 from 1 while P[i]^d1 * P[j]^d2 * P[k] * P[l] * p5 <= N do
            for d3 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l] * p5 <= N do
             for d4 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5 <= N do
               for d5 from 1 while  P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5 <= N do
                 V:= V,P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5
    od od od od od od od od:
    sort([V]); # Robert Israel, Jun 09 2025
  • Mathematica
    A383729Q[k_] := Length[#] == 5 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
    Select[Range[10^5], A383729Q]